

POLITECNICO DI MILANO

BCD SPAD imager with reconfigurable macropixels for photon counting, timing and coincidence detection

F. Villa, D. Portaluppi, M. Sanzaro, E. Conca, F. Zappa

Outline

Motivations and design goals

SPAD imager architecture

- "Macropixel" design
- TDC structure
- > 32x32 array

Chip characterizations

- TDC preliminary tests
- SPAD characterization

Conclusions

Outline

Motivations and design goals

- SPAD Imager architecture
 - "Macropixel" design
 - TDC structure
 - ➤ 32x32 array
- Chip characterizations
 - TDC preliminary tests
 - SPAD characterization

Conclusions

PoliMi 32×32 SPAD+TDC array chip

- 1024 smart pixels
- 30-µm diameter SPADs

(3.14% fill-factor)

10-bit in-pixel TDCs

for "photon-timing" (TOF 3D ranging, FLIM) 312 ps LSB, 320 ns FSR

6-bit in-pixel counters

for "photon-counting" (2D imaging)

100,000 frames/s

F. Villa et al., JSTQE, 2014

Single-photon camera

SPAD+TDC array chip carrier board

Analog interface board

(for interfacing the chip and handling triggering and synchronization input/output signals)

Digital processing board

(FPGA for data processing, storage, and USB3 communication link)

Power supply board

(power supplies generation, including user-selectable SPAD bias)

R. Lussana et al., OE, 2015

Many applications

• 3D ranging at short-distance

• Satellite 3D ranging

Raw photon arrival data from SPAD camera Photon data overlaid with our estimated reflectivity

• First-photon 3D ranging

Robust filtering of photon data

Final 3D and reflectivity reconstruction

Quantum physics (Weak measurements)

ISSW, February 27th, 2018

federica.villa@polimi.it

6

POLITECNICO DI MILANO

Main limitation of previous camera

- low PDE in the NIR
- low fill-factor
- low timing resolution
- no simultaneous counting/timing
- no hardware gating
- low TDC duty-cycle

New design specifications

Imager features:

- Hardware-gating and free-running modes
- In-pixel counters and TDC
- Multiple gates within 1 frame
- High flexibility: 2D imaging, 3D LIDAR, FLIM...

Best-in-class performance:

- SPADs with high PDE
- Fill Factor (> 5%)
- Timing resolution (< 100 ps)
- Scalability

Outline

SPAD Imager architecture

- "Macropixel" design
- TDC structure
- > 32x32 array
- Chip characterizations
 - TDC preliminary tests
 - SPAD characterization

Conclusions

Macropixel architecture

- 32 μ m square SPAD, 100 μ m pitch, 9.6% fill factor
- 160 nm BCD technology

Macropixel operating modes

Single-photon mode (preserve spatial information)

- TDC is shared with no loss of X-Y resolution
- Each SPAD has its own storage register

Two-photon mode (ambient light suppression)

• Discrimination among multiple detectors, allowing 2×2 mini-SiPM operation

Two synchronous detections \rightarrow one TDC conversion

Two-photon mode

10 Mcps background, 10% PDP

Pro: Uncorrelated noise suppression

Con: Halved spatial resolution (like a mini-SiPM)

TDC architecture

- 75 ps LSB, 12 bit
 (300 ns FSR)
- 415 MHz ref clock
- 7 bit coarse counter
 + 5 bit interpolator
 (STOP)
- Global electronics:
 START interpolator,
 DLL clock gen.
 - Sliding scale
- Single-hit within gate, but multi-gate frame

POLITECNICO DI MILANO

Innovative TDC features

- In-pixel gate counter \rightarrow up to 64 gate windows per frame
- Rising- and falling-edge sensitive interpolator:
 ½ clock lines (reduced area occupation and power consumption)
 50% duty-cycle needed

Innovative TDC features

- In-pixel gate counter \rightarrow up to 64 gate windows per frame
- Rising- and falling-edge sensitive interpolator:
 ½ clock lines (reduced area occupation and power consumption)
 50% duty-cycle needed

Multiphase clock generator

- 150 ps phase delay from DLL
- Clock edge interpolators to achieve 75 ps resolution
- Adjustable buffers for calibration

Edge interpolator

- Constant current C discharge
- Robust vs. process variations

T. Saeki et al., JSSC, 2000

Dummy guard traces

- Crosstalk between clock phases results in non-linearity
- Routing within clock generator is critical
- Dummy phases added to global clock routing

Clock driver performance (post layout)

221 ps

182 ps

Vdd = 1.8 V	Near end	Far end
$T_{RISE_{20-80}}$	120 ps	202 ps
$T_{FALL_{20-80}}$	90 ps	170 ps
Vdd = 1.5 V	Near end	Far end

146 ps

108 ps

power consumption / performance trade-off favorable for lower supply voltage

Power consumption	1.8V driver	1.5V driver
	4.93 W	3.92 W
Overall clock-related power		(- 20%)

 $T_{RISE_{20-80}}$

 $T_{FALL_{20}-80}$

Single column select readout

PIXEL BEING READOUTPIXEL ENABLED, PRECHARGING THE BUS

ISSW, February 27th, 2018

federica.villa@polimi.it

POLITECNICO DI MILANO

In-pixel readout logic

- 3 static control signals: FAST, COUNT, FIRST_ONLY
- Distributed «one-hot» shift register plus combinatorial logic
- Maximizes bus precharge time, reduces number of global lines, offers great readout flexibility

PIXEL BEING READOUTPIXEL ENABLED, PRECHARGING THE BUS

Available operation modes

Mode	Outputs	# cycles
Single-photon normal readout	4 timing (one per SPAD), 4 counters	4
Single-photon fast readout	First event timing, WHO, 4 counters	2
Single-photon first timing only	First event timing, WHO	1
Counting only	4 counters	1
Double-photon full readout	First 4 event timing, double event counter [3 SPAD single event counters]	4
Double-photon first only	First event timing, double event counter	1

Global routing constraints

Power supplies

- Thick top metal
- > TDC clocks
 - 5 bit interpolator (32 phases @ 415 MHz)
 - Thick top metal

Row readout

- 23 bit bus
- Metal 3 (thin)

25

16x16 macropixel array

Macropixel

- 4 SPADs, VLQCs, gating
- TDC and event counters

Array

- 16x16 macropixels (32x32 SPADs)
- Clock generation
- Global readout electronics
- Power distribution

Fabricated chips

Stand-alone TDC

75 ps LSB, 300 ns FSR (extendable), 1.6 x 1.6 mm²

> 32 x 32 SPAD array

9.6% fill factor,
1 mm² total active area,
4.2 x 4.6 mm²

27

Outline

- Motivations and design goals
- > SPAD Imager architecture
 - "Macropixel" design
 - TDC structure
 - ➤ 32x32 array

Chip characterizations

- TDC preliminary tests
- SPAD characterization

Conclusions

TDC preliminary characterization

Single shot precision = 115 ps FWHM

ISSW, February 27 th , 2018	federica.villa@polimi.it	29	POLITECNICO DI MILANO

SPAD PDE and uniformity

SPAD DCR

SPAD DCR

SPAD timing (FWHM)

SPAD timing (diffusion tail)

Outline

- > Motivations and design goals
- > SPAD Imager architecture
 - "Macropixel" design
 - TDC structure
 - > 32x32 array
- Chip characterizations
 - TDC preliminary tests
 - SPAD characterization

Conclusions

Parameter	Value	Units
SPAD number	32 × 32	
TDC number	16 × 16	
SPAD pitch	100	μm
SPAD side	32	μm
Fill-factor	9.6%	
Operating mode	Only timing / Only counting Simultaneous timing and counting	
SPAD activation	HW gate Free running	
TDC resolution	75	ps
TDC FSR	300	ns
TDC number of bit	12	bit
TDC single-shot precision	115	ps (FWHM)
Counter number of bit	5	bit
SPAD PDE	60% (@500nm), 12% (@800nm)	
SPAD DCR	150	cps
SPAD time jitter	60	ps (FWHM)
ISSW, February 27 th , 2018 fe	derica.villa@polimi.it 36 POLITECNI	CO DI MILANO