Computational Single-photon Imaging

Gordon Wetzstein Stanford University ISSW 2/28/2018

www.computationalimaging.org

Muybridge's Multi-Camera Array at Stanford

Computational Cameras

Computational Displays

Computational Cameras

Computational Cameras

HDR Imaging [Debevec, Nayar, ...]

Super-resolution [Baker, ...]

Light Fields [Levoy, ...]

Computational Displays

Computational Cameras

HDR Imaging [Debevec, Nayar, ...]

Super-resolution [Baker, ...]

Super-resolution [Hirsch, Heide, ...]

Light Fields [Levoy, ...]

Light Fields [Wetzstein, ...]

Computational Displays

HDR Display [Seetzen, ...]

Computational Light Transport

Computational Cameras

Computational Displays

Computational Light Transport

Computational Cameras

Computational Displays

3D Imaging for Autonomous Vehicles

3D Imaging for Smartphones

iPhone X

3D Imaging for VR/AR

HTC Vive Lighthouse

Direct Time-of-Flight 3D Imaging

Direct Time-of-Flight 3D Imaging

Challenges

- 1. Light efficiency
- 2. High-speed time stamping

Single-photon Avalanche Diode Array

regular image

"transient" image

LinoSPAD Scanning Procedure

x (320 pixels) regular image

LinoSPAD Scanning Procedure

LinoSPAD Scanning Procedure

Reconstructing Transient Images

regular image

regular image

regular image

transient image

regular image

regular image

regular image

transient image

Pushing the Limits of Transient Imaging Acquisition at 25 Hz with 64x80 resolution

scene under laser light

transient image (RAW) transient image (processed)

Lindell et al., ICCP 2018

scene under laser light

				1.1								
Frame 1	Frame 2	Frame 3	Frame 4	Frame 5	Frame 6	Frame 7	Frame 8	Frame 9	Frame 10	Frame 11	Frame 12	Frame 1
Frame 14	Frame 15	Frame 16	Frame 17	Frame 18	Frame 19	Frame 20	Frame 21	Frame 22	Frame 23	Frame 24	Frame 25	Frame 2
Frame 27	Frame 28	Frame 29	Frame 30	Frame 31	Frame 32	Frame 33	Frame 34	Frame 35	Frame 36	Frame 37	Frame 38	Frame 3
Frame 40	Frame 41	Frame 42	Frame 43	Frame 44	Frame 45	Frame 46	Frame 47	Frame 48	Frame 49	Frame 50	Frame 51	Frame 5
Frame 53	Frame 54	Frame 55	Frame 56	Frame 57	Frame 58	Frame 59	Frame 60	Frame 61	Frame 62	Frame 63	Frame 64	Frame 6
Frame 66	Frame 67	Frame 68	Frame 69	Frame 70	Frame 71	Frame 72	Frame 73	Frame 74	Frame 75	Frame 76	Frame 77	Frame 7
Frame 79	Frame 80	Frame 81	Frame 82	Frame 83	Frame 84	Frame 85	Frame 86	Frame 87	Frame 88	Frame 89	Frame 90	Frame 9
Frame 92	Frame 93	Frame 94	Frame 95	Frame 96	Frame 97	Frame 98	Frame 99	Frame 100	Frame 101	Frame 102	Frame 103	Frame 10
Frame 105	Frame 106	Frame 107	Frame 108	Frame 109	Frame 110	Frame 111	Frame 112	Frame 113	Frame 114	Frame 115	Frame 116	Frame 11
Frame 118	Frame 119	Frame 120	Frame 121	Frame 122	Frame 123	Frame 124	Frame 125					

transient video (processed)

Applications of Transient Imaging

- depth estimation
- direct-global illumination separation
- light transport analysis
- fundamentally new imaging modality that could enable new capabilities for image processing & computer vision algorithms ... ongoing work

• enables *Non-line-of-sight (NLOS) Imaging*

$$\tau(x',y',t) = \iiint_{\Omega} \frac{1}{r_l^2 r^2} \delta(r_l + r - tc) \cdot \rho(x,y,z) \, dx \, dy \, dz$$

NLOS image formation mode:

 $\begin{array}{ccc} \text{measurements transport matrix unknown volume} \\ n^3 \times 1 & n^3 \times n^3 & n^3 \times 1 \end{array}$

PROBLEM: A extremely large in practice

- for n=100, A has 1 trillion elements
- for n=1000, sparse A needs 9 petabyte of memory

Challenges of NLOS Imaging

- 1. Light efficiency, high-speed time stamping
- 2. Efficient Scanning
- 3. Large-scale inverse problem

4. Accurate (and invertible) NLOS light transport model

Confocal Non-line-of-sight Imaging

Maximum Intensity Projection

Challenges of NLOS Imaging

- 1. Light efficiency, high-speed time stamping \rightarrow SPADs
- 2. Efficient Scanning

- compatible with LIDAR systems
- low-cost fabrication; silicon & CMOS
- increasing availability of detectors
- 3. Large-scale inverse problem
- 4. Accurate (and invertible) NLOS light transport model

Challenges of NLOS Imaging

- 1. Light efficiency, high-speed time stamping
- 2. Efficient Scanning
- 3. Large-scale inverse problem

4. Accurate (and invertible) NLOS light transport model

Confocal SPAD-based Scanning Setup

Single Photon Avalanche Detector

O'Toole et al., Nature 2018

Focusing Lens

Short-Pulsed Laser Illumination (50ps FWHM)

O'Toole et al., Nature 2018

Beam-Splitter in Coaxial Alignment

Scanning Galvo Mirror System

Illumination Path

O'Toole et al., Nature 2018

Detection Path

O'Toole et al., Nature 2018

Challenges of NLOS Imaging

- 1. Light efficiency, high-speed time stamping
- 2. Efficient Scanning
- 3. Large-scale inverse problem

4. Accurate (and invertible) NLOS light transport model

²D space

3D space-time

Minkowski's light cone

shift-invariant convolution with light cone

spatio-temporal information transfer

intersection with light cone

intersection with light cone

convolution - NOT shift invariant

2D SPAD measurements

3D SPAD measurements

Our approach

express image formation model as a 3D convolution, by:

- 1. confocalizing measurements
- 2. performing a change of variables

3D measurements

Our approach

express image formation model as a 3D convolution, by:

- 1. confocalizing measurements
- 2. performing a change of variables

3D measurements

Our approach

express image formation model as a 3D convolution, by:

- 1. confocalizing measurements
- 2. performing a change of variables

3D measurements

$$v^{3/2}\tau(x',y',\frac{2}{c}\sqrt{v}) = \iiint_{\Omega} \,\delta\left((x'-x)^2 + (y'-y)^2 + u - v\right) \cdot \frac{1}{2\sqrt{u}} \,\rho(x,y,\sqrt{u}) dxdydu$$

Our approach

express image formation model as a 3D convolution, by:

- 1. confocalizing measurements
- 2. performing a change of variables

3D measurements

$$v^{3/2}\tau(x',y',\frac{2}{c}\sqrt{v}) = \iiint_{\Omega} \delta\left((x'-x)^2 + (y'-y)^2 + u - v\right) \cdot \frac{1}{2\sqrt{u}} \rho(x,y,\sqrt{u}) dx dy du$$

$$\square$$

$$T$$

$$=$$

$$\mathbf{a}$$

$$*$$

$$\rho$$

NLOS image formation mode:

$$\tau = \mathbf{A}\rho_{\mathbf{x}}$$

measurements transport matrix unknown volume $n^3 \times 1$ $n^3 \times n^3$ $n^3 \times 1$

Backpropagation [Velten 12, Buttafava 15]

Flops: $O(n^5)$

Memory: $O(n^3)$

measurements transport matrix unknown volume $n^3 \times 1$ $n^3 \times n^3$ $n^3 \times 1$

Backpropagation [Velten 12, Buttafava 15]

Flops: $O(n^5)$

Confocal NLOS image formation mode:

measurements

measurements

Maximum Intensity Projection

Retroreflective Mannequin Measurements

Spatial resolution: 64x64 Exposure time (per sample): 1 sec Retroreflective: Yes

LCT-Reconstructed Traffic Sign

Spatial resolution: 64x64 Exposure time (per sample): 0.1 sec Retroreflective: Yes

LCT-Reconstructed Retroreflective Letters

Spatial resolution: 64x64 Exposure time (per sample): 0.1 sec Retroreflective: Yes

LCT-Reconstructed Diffuse Letter

Spatial resolution: 64x64 Exposure time (per sample): 1 sec Retroreflective: No

Towards Real-time NLOS Imaging

Resolution Limits of NLOS Imaging

Challenges of NLOS Imaging

- 1. Light efficiency, high-speed time stamping
- 2. Efficient Scanning
- 3. Large-scale inverse problem

4. Accurate (and invertible) NLOS light transport model

... slides omitted for confidentiality ...

Stanford Computational Imaging Lab

Light Field Cameras

Virtual & Augmented Reality

Computational Microscopy

head-fixed

Image Optimization

Time-of-Flight Imaging

Computational Displays

Gordon Wetzstein Computational Imaging Lab Stanford University

www.computationalimaging.org

Matt O'Toole

David Lindell

Felix Heide

Thanks to:

- Edoardo Charbon, EPFL
- Samuel Burri, EPFL
- Pierre-Yves Cattin, Fastree3D

