

LIDARs for automotive and industrial applications Lucio Carrara – Fastree3D CTO

lucio.carrara@fastree3d.com +41 78 601 19 58

Fast. Digital. Simple.

Outline

2 Rationale of a complete solution (Flash LIDAR SoC)

Conclusions

(ADAS solution is collaborative)

3

Outline

2 Rationale of a complete solution (Flash LIDAR SoC)

3 Conclusions (ADAS solution is collaborative)

50km/h~28m

Act

How to decrease latency?

Automate the "sense, think and act"

Complementary Technologies

2D Imaging

Limitations:

- Extreme illumination conditions
- Low contrast
- No direct depth information

Radar Limitations:

- High noise
- Low resolution (±0.25m)
- No direct image

Bartsch et al, Adv Radio Sci., 10, 45 (2012)

Improving ADAS performance

Challenges in urban environment

Acquisition speed

Adverse illumination

Source : image Frost&Sullivan ; EuroNCAP 2016, NHSTA NCSA 2014-2015 ; NHSTA 0.5 casualty /min, 1 fatality / 2h Fastree 3D | Company overview © 2017

Outline

2 Rationale of a complete solution (Flash LIDAR SoC)

3 Conclusions (ADAS solution is collaborative)

What would an ideal sensor look like?

Fast

- Detection
- Interpretation

Fast

 SPAD array (high sensitivity, native digital)

What would an ideal sensor look like?

Reliable

- In any condition
- Quality assessment

Reliable

• Statistical approach (TCSPC)

What would an ideal sensor look like?

Affordable

- Simple design
- Scalable

Affordable

- Flash LiDAR
- CMOS

An ideal Flash LIDAR sensor ?

Fast full scene capture

- > 100 fps
- 0-100 K Lux operation
- <1% σ_z resolution
- >10 kpx arrays

Illumination efficiency

- Power efficient
 (~ 30 m eye-safe range)
- Scene "Flash" illumination

Optimizing illumination for a given range

Photon detection efficiency

• ~ 5% PDE @ λ= 850 nm

Price performant illuminators

VCSEL array illuminators

<u>Parameters</u>

- 8W peak
- < 2 ns pulses</p>
- < 100 ms integration time
- PRR ~2 MHz
- 1-4 illumination sources

Technology-Choice Consequences

SPAD Array

Flash imaging

- High sensitivity
- High data throughput

TCSPC

Time correlated measurements

- Statistical approach
- Quality of results

What sensor interface?

Technology-Choice Consequences

System on a Chip (SoC)

Monolithical integration

↑ Reliability

Point-Cloud tagged with quality of results

Flexibility Control over sensor SoC

Affordability Flash LiDAR CMOS

Direct ToF

TCSPC

Contribution to the detection

Direct ToF

TCSPC

Contribution to the detection

Statistics of the contributions:

- Signal \rightarrow time-correlated
- DCR \rightarrow uniform
- Env. \rightarrow uniform

Accumulation over time allow to identify the signal!

Fastree 3D | Physics Overview © 2017

Quality of Result

CPU-DPU Settings

- Threshold for the Quality of Result per pixel (QoR/px)
- Threshold to freeze readout

Quality of Result

CPU-DPU Settings

Control over :

- Threshold for the Quality of Result per pixel (QoR/px)
- Threshold to freeze readout

Quality of Result

Distance-QoR

2-bit encoded \rightarrow 4 possibilities

Flexibility: data types

Distance

Flexibility: data types

Distance Intensity

Flexibility: data types

Distance Intensity Speed

Fastree 3D

imagers

Challenges in TCSPC devices

Multi-Camera problem

Fastree 3D | Illumination Module © 2017

Multipath problem

Multiple reflection effect:

- Create a sequence of pulses
- The back-scattered pulses are spaced over time (no overlap)
- Their intensity is proportional to the reflectivity of the objects.

Illuminators' role

Multi-Camera problem

Developed proprietary solutions

- Scalable to n-cameras interaction.
- No supervision/intra-camera communication needed.
- Low power.

Outline

2 Rationale of a complete solution (Flash LIDAR SoC)

3

Conclusions (ADAS solution is collaborative)

LIDARs for automotive and industrial applications Lucio Carrara – Fastree3D CTO

lucio.carrara@fastree3d.com +41 78 601 19 58

Fast. Digital. Simple.

Source : Boston Consulting Group, 2015 (adapted), image Google (sensors adapted)

Back Up

SPAD Data Throughput

- Timestamps/s * N^rbits/timestamp=Data throughput 40MHz * 13bit~50Mbit
- Timestamps/s= pulsing freq (e.g. 40MHz) which determines range ambiguity

Performance of a LiDAR is given by <u>how much</u> <u>power</u> we can <u>emit</u>, <u>how sensitive</u> we can <u>detect</u>, while keeping <u>data throughput</u> <u>manageable</u> and <u>low power consumption</u>. All in a compact solution.

SoC Trends

Source: Bob Broderson, Berkeley Wireless group

Programmability: Where do FPGA's fit?

Time Correlate Single Photon Counting (TCSPC) Fastree 3D

SPAD pixel

High detection rate

• Short avalanche cycle

Source : <u>http://aqua.epfl.ch/page-96286-en.html</u> ; Edoardo Charbon Philosophical Transactions of the Royal Society, 2014;372:201301 Fastree 3D | Company overview © 2017 Single photon arrays implementation

Miniaturization

Source:Fastree3D SA ST Microelectronics, SPADnet/Megaframe projects EPFL ; Fastree 3D | Company overview © 2017

Arrays

Time correlated information.

3D circuits

TSV 5μm

•

- FF >90%
- Pitch 25µm
 - DSP <65nm