SPADs for Fluorescence Lifetime Imaging Microscopy (FLIM)

Robert K. Henderson, Istvan Gyongy, Tarek Al Abbas, Ahmet Erdogan

Low Light Imaging

Low Light Imaging++

THE UNIVERSITY of EDINBURGH CMOS Sensors & Systems Group

Content

- Scientific Image Sensors
- Fill-factor Problem
- Binary SPAD Sensors
- Digital SPAD Sensors
- Scientific SPAD Sensor Outlook

Scientific Image Sensors

Specifications

Specification	GSENSE2020BSI	iXon Ultra EMCCD	
Resolution	2048 x 2048	1024 x 1024	
Pixel Size	6.5μm × 6.5μm	13μm × 13μm	
Full well	54ke-	80ke-	
Dynamic Range	90dB	98dB (est.)	
Max. SNR	47dB	49dB (est.)	
Readout Noise	1.2e-	<1e- with EM gain	
Dark Current	0.2e-/p/s @ -20°C	0.00025e-/p/s @ -80°C	
Frame Rate	74fps	26fps	
Power	1.2W	-	
Peak QE	94% @ 550nm	95% @ 600nm	

THE UNIVERSITY of EDINBURGH

Quantum Efficiency (QE)

• Backside Illuminated EMCCD and scientific CMOS

Scientific SPAD Sensor

Scientific SPAD sensors promise:

- Noiseless frame capture with typical cooling (<-60C).
- 2. ADC-less oversampled operation at high frame rate and low bit depth for high speed low light transient capture.
- 3. High time resolution (nanosecond time scale) for fluorescence lifetime/Raman, quantum correlations or ToF.

THE UNIVERSITY of EDINBURGH CMOS Sensors & Systems Group

Scientific SPAD Sensor

Can a scientific SPAD sensor ever match EMCCD/sCMOS?:

- 1. Pixel pitch (6-16 μ m) for 60x-150x objectives.
- 2. Resolution (>1Mpix) and fill-factor (>50%).
- 3. Full well capacity (>40ke-).
- 4. Dark current (few e-/p/s at RT).
- 5. Pixel defectivity of <1%.

Low Fill Factor SPAD Imagers

MegaFrame 32x32 Imager

32 x 32 50µm pixels each containing 7µm diameter SPAD + 50ps resolution stopwatch (50ns full scale) + 10-bit counter Rate = 512Mphotons/s

Fill-factor Problem

3% FF [Guerrieri, 2010]

1.5% FF [Richardson, 2009] 50µm Pitch Microlens Array [Donati, 2007]

• First generation SPAD pixels large with low fillfactor – difficult to microlens at wafer scale.

THE UNIVERSITY of EDINBURGH CMOS Sensors & Systems Group

Binary SPAD Imagers

Binary SPAD sensors

-Simple binary pixels for improved fill factor and resolution

--High speed of operation (100kFPS+)

-Negligible readout noise

Binary SPAD image sensors

<u>CMOS Sensors & Systems</u> Group

Pixel Circuits

- All NMOS circuits
- Gated analogue photon counting or binary mode

Raw output

Single photon oversampled binary camera (Quanta Image Sensor)

Fossum (2005) "Gigapixel Digital Film Sensor (DFS) Proposal"

Example – Rotating fan

Sequence of raw bit-planes at 10kfps

(Playback at 500× slower rate)

Raw output (cont.)

Response is akin to photographic film

Raw output (cont.)

Response is akin to photographic film

Example – BPAE cell

Sensitivity Comparison

PDE/QE Comparison

SPCimager SNR Comparison

• Microlensed SPCimager

Tphoton1 SNR Comparison

Tphoton1 SNR comparison

Time-gated lifetime estimation

Dual time gate example: R&G beads

Excitation: 405nm pulsed laser @ 5MHz

Time gate sweep example: Convallaria

SPAD image frame at different delay settings (15ns time gate, 250ms acquisition time per image) 68.3µm Intensity (R+G) vs. lifetime 1000 800 Mean pixel value 600 400 200 0 2 3 4 5 7 6 0 1 8 2.5s acquisition tilite for lifetime map (when based on 10 image frames) THE UNIVERSITY of EDINBURGH

CMOS Sensors & Systems Group

4ns

3ns

Lifetime Uniformity

Fluorescein sample: lifetime obtained by moving a 15ns time gate in 1ns steps and composing 10 image frames, from 10000, 10 μs bit-plane exposures each, using 10×10 pixel binning

Single Molecule Localisation Microscopy 40nm

GATTA PAINT 40G (ATTO542) nanoruler

625 bit-planes (62.5ms exposure per image frame)

THE UNIVERSITY of EDINBURGH

Single Molecule Localisation Microscopy

The camera of choice is typically an EMCCD: **high quantum efficiency** (QE×FF≈90%), and effectively **no read or dark noise**.

SPAD: lower inherent QE (QE×FF<25%), but higher frame rates, continuous capture, no read noise and no excess noise factor.

High SPAD frame rate can be exploited for background suppression ("smart aggregation")

I. Gyongy et al., Scientific Reports 2016

SMLM (dSTORM) example: nanoruler

GATTA-PAINT HiRes 40G nanoruler

EMCCD (FWHM* ≈ 32nm)

SPCImager (FWHM* ≈ 28nm)

*Mean FWHM of individual markers in superresolution image

I. Gyongy et al., Optics Express 2018

Comparable localisation performance to EMCCD

THE UNIVERSITY of EDINBURGH

Particle tracking

- A SPAD images at t=0 and t=100ms (0.5ms exp.)
- B sCMOS images at t=0 and t=100ms (5ms exp.)

CHE Read Trajectory as captured using SPAD (full line, 2kFPS) and SPAD (full line, 2kFPS) and SPAD (full line, 2kFPS) and SPAD (full line, 2kFPS)

Brownian motion – experimental results

0.5µm red beads in a 50:50 mixture of glycerol and water

Set frame rate post capture to optimal value

Live cell vesicle tracking

Secretory (Pheochromocytoma) cell with vescicles labeled using soluble cargo Neuropeptide Y (NPY) fused to mCherry

EMCCD – 55ms frame time (time lapse)

Extracted tracks

Live cell vesicle tracking

Secretory (Pheochromocytoma) cell: close-up

SPAD – 55ms (150×110 pixel ROI is shown)

Digital SPAD Imagers

TCSPC Histogramming In Pixel

A 16.5 Giga Events/s 1024 × 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC

Ahmet T. Erdogan¹, Richard Walker¹, Neil Finlayson¹, Nikola Krstajić^{1,2}, Gareth O.S. Williams², Robert K. Henderson¹

1 – CMOS Sensors and Systems Group, University of Edinburgh, UK 2 – EPSRC IRC Hub in Optical Molecular Sensing & Imaging, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, UK

Abstract

A 1024×8 single photon avalanche diode (SPAD) based line sensor for time resolved spectroscopy is implemented in 0.13 µm imaging CMOS with 23.78 µm pixel pitch at 49.31% fill factor. The line sensor can operate in single photon counting (SPC) mode (65 giga-events/s), time-correlated single photon counting (TCSPC) mode (194 million events/s) or histogramming mode (16.5 giga-events/s), increasing the count rate up to 85 times compared to TCSPC operation. This performance is enabled by a 512 channel histogramming TDC with 50ps-6.4ns/bin zoomable time resolution. **Keywords:** CMOS, SPAD, TCSPC, Histogramming, Time-resolved spectroscopy. also be configured from 1 to 128 time-events per bin under the control of the Histogram decoder (Fig. 5). Together with a 50 ps resolution on-chip delay generator, this feature allows positioning and zooming of the histogram window to the spectral peak. In SPC mode, the first 4 histogram bins are used in chain mode creating two independent time gated 20-bit counters (SPCA and SPCB) allowing rapid fluorescence lifetime estimation. Simultaneous readout and detection is supported to achieve 100% temporal aperture ratio. Optical throughputs of 65 giga-events/s in SPC mode, 194 million events/s in TCSPC mode and 16.5 giga-events/s in histogramming mode are achieved. Histogramming mode increases the count rate up to 85 times compared to TCSPC

THE UNIVERSITY of EDINBURGH CMOS Sensors & Systems Group

Rall Line Sensor

Ra-II Characterisation

- Excellent time resolution (114ps) and uniformity
- Up to 100x dynamic range extension by on-chip histogramming.

THE UNIVERSITY of EDINBURGH

CMOS Sensors & Systems Group

• 300 klines/s readout

40

- Two wavelength ranges (for Fluorescence and Raman)
- Some etaloning in CMOS FSI stack

Pixel No.

CMOS Sensors & Systems Group

41

Spectroscopic Measurements

- Measurement of Ra-II with custom spectrograph
- Spectral FRET-FLIM at unprecedented rates (Fluorescein-Rhodamine)

Histogram Zooming

╡ ┙╴╌╴┨╴┙╸┿╧┱╼╺┿╋┲╼┲ ┇╴╶╌╴┨╴╸╺╧┱╼╶╴╴╧┱╴╧┱┲┲╴┇

ENIAC POLIS Project

WELCOME TO POLIS WEBSITE

LATEST NEWS

- 2016-2020 99MEuro project (No UK funding!)
- STMicroelectronics 3D stacked SPAD process pilot line
- 40nm/65nm stacked 3D process technology

THE UNIVERSITY of EDINBURGH

Stacked 3D Image Sensor

- First wafer-scale stacked SPAD image sensor
- 40nm CMOS (STMicro)
- 7.83µm pixel, 50% fill-factor,
 12 bit gated pixel (4096 ke-)

[Tarek Al Abbas]

ΓΗΕ UNIVERSITY of EDINBURGH

Photon Detection Efficiency

• PDE = PDP × Fill Factor

Photon Counting

Single shot grayscale intensity image (2V ExB)

[Tarek Al Abbas, IEDM 2016]

THE UNIVERSITY of EDINBURGH

Time Gating

[Tarek Al Abbas, IEDM 2016]

THE UNIVERSITY of EDINBURGH CMOS Sensors & Systems Group

ITOF Experiment

• Indirect time of flight, 4ns pulse, 840nm

[Tarek Al Abbas, IEDM 2016]

Future Directions

Full Well Capacity

• Some partition between on-pixel counting and oversampling is required to maintain DR.

3µm Pitch SPAD Test Structure

 Demonstrates feasibility of small pitch high resolution SPAD imagers.

Cross Section and TCAD

- TCAD indicates well confined high field region.
- VBD=15.8V not confirmed.

THE UNIVERSITY of EDINBURGH

[Pancheri, ESSDERC 2011]

DCR Distribution

Specifications

Specification	GSENSE2020BSI	iXon Ultra EMCCD	Scientific SPAD
Resolution	2048 x 2048	1024 x 1024	1024 x1024
Pixel Pitch	6.5µm	13µm	8µm/16µm
Full well	54ke-	80ke-	4096 (12-bit) with ~16x oversampling
Dynamic Range	90dB	98dB (est.)	1MHz/10Hz -90dB
Max. SNR	47dB	49dB (est.)	See full-well
Readout Noise	1.2e-	<1e- with EM gain	0e-
Dark Current	0.2e-/p/s @ -20°C	0.00025e-/p/s @ -80°C	10Hz/p/s @RT
Frame Rate	74fps	26fps	Easily achievable as no ADC
Power	1.2W	-	Few 100mW
Peak QE	94% @ 550nm	95% @ 600nm	~50% with BSI SPAD + microlens

THE UNIVERSITY of EDINBURGH CMOS Sensors & Systems Group

Summary

- Sensitivity of SPAD arrays can approach 2-3x the best backside illuminated low-light cameras (sCMOS/EMCCD). Viable scientific SPAD image sensor still limited by SPAD PDE and defectivity.
- Post-processing to set optimal frame rate can be achieved due to noiseless frame summation for e.g. transient phenomena in microscopy, 3D motion compensation, object tracking.
- Combination of 3D stacking, pixel level counting and oversampling can address DR limitations.

Acknowledgements

- This research was funded by the ERC-TotalPhoton, EPSRC-Proteus and ENIAC-POLIS projects.
- The authors appreciate the support of STMicroelectronics who fabricated the devices.
- The use of the ESRIC facilities at Heriot-Watt University is also gratefully acknowledged.

Research Council

PROTEUS

Edinburgh Super-Resolution Imaging Consortium

THE UNIVERSITY of EDINBURGH CMOS Sensors & Systems Group

62

Thank you for listening!

Any questions?

