

Multizone, Multiobject D-TOF System in 55nm

ams AG - Shaping the world with sensor solutions

Robert Kappel 1st International SPAD Sensor Workshop Les Diablerets, Feb 27th, 2018

Content

Sensing is life.

- Time of flight module
 - Silicon
 - » Sensor
 - SPAD
 - Readout
 - Time to Digital Converter
 - Data storage
 - » Illumination
 - VCSEL driver
- Measurement Results
 - VCSEL beam
 - Distance measurement
 - » Module only, cover glass, smudge
- Demonstration video
 - » Distance measurement
 - » Multi object
 - » Multi zone

D-TOF Silicon SPAD sensor and light emitter

- Architecture
- Characterization data

Confidential © ams AG

Block Diagram

2 Low Voltage Power High Voltage Power Breakdown voltage Management Management detection 2 2 ... TDC+Memory TDC+Memory SPAD I2C interface 88 array 5 П ••• ... 2 2 ... SPAD SPAD array array TDC+Memory 55 5 5 CPU • • • ... g Q ••• ARM MO ... SPAD SPAD array arrayÉ 🖸 2 ... Main Memory TDC+Memory TDC+Memory V/I Clock VCSEL Driver Reference Generation

Features:

- 55nm HV process node
- Custom developed SPAD sensor
- 4 zones on main sensor array
- TDC and histogram based distance detection
- Fully integrated power management
- Cortex M0 CPU
- Sub-ns pulse generating laser driver
- Multi-mesa VCSEL diode

Block Diagram

2 Low Voltage Power High Voltage Power Breakdown voltage Management Management detection 2 2 ... TDC+Memory TDC+Memory SPAD I2C interface 88 array 5 П ••• ... 2 2 ... SPAD SPAD array array TDC+Memory 55 5 5 CPU • • • ... g Q ••• ARM MO ... SPAD SPAD array arrayÉ 🖸 2 ... Main Memory TDC+Memory TDC+Memory V/I Clock VCSEL Driver Reference Generation

Features:

- 55nm HV process node
- Custom developed SPAD sensor
- 4 zones on main sensor array
- TDC and histogram based distance detection
- Fully integrated power management
- Cortex M0 CPU
- Sub-ns pulse generating laser driver
- Multi-mesa VCSEL diode

SPAD Details

SPAD cross section:

SPAD characteristics:

Parameter	Тур	Unit
BV	17.7	V
BV temperature coefficient	0.016	V/K
DCR @ 3V	0.28	cps/um ²
PDP @ 940nm	1.5	%
Timing Jitter @ 940nm (FWHM)	80	ps
After pulsing probability	<0.5	%
Fill factor (SPAD + Quenching)	25	%

- Isolated SPAD sensor
- Modified process to generate SPAD P and SPAD N layer to reduce the breakdown voltage
 - + Iow DCR
 - + low jitter
 - + Low afterpulsing probability

SPAD Key Characteristics PDP=f(V_{exc}, T, λ)

- Photon detection probability PDP depends on wavelength and excess bias voltage.
- PDP increases with temperature for 940nm because bandgap decreases with temperature.
- PDP similar to state of the art.

(†) Veerappan, C., Charbon, E., "A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology," IEEE Trans. Electron Devices 63(1), 65–71 (2016).

SPAD Key Characteristics

Timing Jitter @940nm

- The full width half maximum (FWHM) of the timing jitter ٠ decreases with excess bias voltage.
- The jitter tail is hardly impacted by the excess bias voltage.
- The FWHM at 3V excess bias voltage is 80ps including the jitter from the Laser source (42ps).

-1.5

-----2

~~3

-5

Distance Measurement Readout and Time-to-Digital converter

- SPAD readout circuitry
- Symmetrical digital gates
 - TDC principle
 - TDC architecture
- Distance processing and calibration
 - Histogram storage

Sensor Readout

Overview

- Pulse shaper to generate a narrow event pulse independent on SPAD deadtime
- Multiple SPADs to be combined to a single TDC channel by using an OR-Tree
- Readout time must be equal from each SPAD to the TDC

Time to Digital Converter

Overview

Free running ring oscillator with flip-flop based overflow counter and latches

- Fine Counter:
- LSB represents propagation delay of inverting cell (~50ps)
- Coarse Counter:
 - Flip-flop based counter detecting overflow of fine counter
- Latch:
 - To store the actual state of the counter on-the-fly without disturbing oscillation
- Decoder: decode
 - Combines fine- and coarse- counter value to a timestamp
- Data is stored in SRAM based histogram memory
 - » Counter value represent address to be incremented

TDC core architecture:

TDC Principle I

Simplified Example

- Transparent latches immediately freeze counter values in case of an event
- High probability that one latch of the fine counter is in metastable state
 - could introduce 1LSB error **》**
- Coarse counter setup time causes delayed response on fine counter overflow
 - Unsafe region of counter may **》** introduce large error

TDC Principle II

Simplified Example

- 2 flip-flop based overflow counters with complimentary clock edge sensitivity
 - Consider only the "stable" coarse counter of a oscillation period when evaluating the latched counter value of the TDC at point in time of trigger signal
 - Fine counter values indicates region and therefore coarse counter to be used
 - Coarse counter value need to be corrected in certain region to cover overlap
 - Overall 1 LSB error could be introduced

How to calibrate the fine counter?

Confidential © ams AG Page 13

TDC Calibration

Digital Calibration Scheme

Before calibration

After calibration

- Each TDC contains one ring oscillator
- Absolute ring oscillator speed is unknown (-50%..+100%)
- Relative ring oscillator speed amongst each other (+-5%)
- Pure digital solution for calibration is used.
 - Each TDC is able to measure its own ring oscillator speed using the system clock as reference.
 - Correction factor can be determined for individual histograms

Illumination of scene VCSEL and VCSEL Driver

- VCSEL architecture
 - VCSEL driver
- Optical characteristics of beam

VCSEL Driver

Key Performance Parameter

Block Diagram

- Charge Pump
 - Decouples min supply voltage from VCSEL forward voltage
 - Small loop of VCSEL current (low EMI)
 - No extra PMOS switch required
- Eye Safety Control
 - Short on VCSEL anode/cathode
 - Current limitation through VCSEL (charge pump)
 - Clock failure detection (charge pump)
- Pulse generation
 - Pulse width: ~300ps FWHM
 - High peak current
- Laser safety: Class 1

System performance Measurement results

- VCSEL pulse
- Crosstalk and smudge removal
- High accuracy, Independent of object color
 - Demonstration video

VCSEL beam measurements

Optical pulse

VCSEL emission profile

Characteristics:

- Optical pulse 150ps
- FOI 15° (1/e²)

• Sub-ns pulsed mode allows increased peak power

Measurement conditions

200mm to 3000mm in 50mm steps

- Target size:
 - 1m x 1m
 - 50fps/800 000 integration cycles
- Color:
 - 90% white
 - 18% grey
 - 4% black
- Conditions:
 - Without cover glass
 - With cover glass (85% transmissivity)
 - Cover glass + smudge
- Background light on the target:
 - 0.2klux
 - 1klux
 - 5klux
 - 10klux
 - 20klux

Histogram comparison

without background light

without Coverglass

Sensing is life.

Confidential © ams AG Page <#>

Distance measurement I

0.2klux and 1klux

Distance measurement II

5klux, 10klux and 20klux

Conclusion

- Direct Time of Flight system using robust histogram-based architecture
- Custom developed SPAD sensor in 55nmHV process node
- Symmetrical readout structure
- Free running TDC architecture
 - Digital calibration scheme
 - Double differential measurement principle
- 940nm VCSEL laser in pulsed operation
 - Laser class 1 safe
- Distance measurement over a wide range of conditions
 - Distance measurement insensitive to crosstalk and smudge
- Multi-object
- Multi-zone capability

Thank you!

Please visit our website www.ams.com