Industrialised SPADs in Deepsubmicron CMOS technology

Sara Pellegrini

Outline of Presentation 2

- ST SPAD history
- 40nm technology introduction
- SPAD device description
- Pixel and readout
- Characterization results
- Conclusions

Outline of Presentation

ST SPAD history

- 40nm technology introduction
- SPAD device description
- Pixel and readout
- Characterization results
- Conclusions

ST SPAD development history

MEGAFRAME 32x32 imager - 2009

- 50 μm pitch, 6 μm diameter SPAD, 1.2% fill-factor
- 50ps time resolution, 50ns full-scale, 7-bit intensity dynamic range

• SPAD fill factor very low and digital area very high

ST SPAD developments history 5

- 19.3 µm pitch, 64% fill-factor
- All logic is pushed at the edge of the array

ST SPAD developments history

ST industrial 130nm CMOS SPAD - 2013

 Pixel only containing passive quenching circuit

Metric	IMG175SPAD Value (@ 60°C) [SPIE Photon Counting Conference]
VHV0	13.8V
DCR Median	~1k cps
PDP	3.1% (850nm)
Fill Factor	6% 🗾 21.6%
Pulse Width	25ns
Max Count Rate	37Mcps
Jitter	120ps FWHM, 870ps FW1%M
Current per Pulse	0.08pA
After-Pulsing	<0.1%
Cross-Talk	<0.01% (isolated SPAD)

ST SPAD developments history 10

Outline of Presentation 11

- ST SPAD history
- 40nm technology introduction
- SPAD device description
- Pixel and readout
- Characterization results
- Conclusions

CMOS 40nm : Technology Overview 12

CMOS45LP main features:

- Low Power (LP): 85% reduction vs 130nm CMOS
- Cell density : 80% reduction in gate area vs 130nm CMOS
- Vdd=1.1V : improved dynamic power
- Copper metal & Ultra Low K dielectric (k=2.55) :

reduces parasitic capacitance, enabling faster switching speeds and lower heat dissipation

• Technology available since 2010 - Source : STCrolles 12"

40nm benefits vs 130nm 13

- Higher digital integration
 - Smaller die size
 - Higher computing power → more complex FW
 - Quicker operations
 - Potential to increase SPAD array size
 - Enables parallel read-out options
 - Wider memory size
- Low-power digital operation
- Opens the door for further technology roadmap
 - 3D stack
 - DTI/CDTI

Outline of Presentation 14

- ST SPAD history
- 40nm technology introduction
- SPAD device description
- Pixel and readout
- Characterization results
- Conclusions

SPAD device description 15

- Doping Profile
 - PWELL and DNWELL define the avalanche region
 - EPI guard ring avoids edge breakdown

SPAD device description 16

Electric Field Profile at breakdown

SPADs microlenses 17

• Several metal layers \rightarrow

Tall optical stack

 Large microlenses focus the beam back onto the SPAD

SPADs microlenses 18

• Several metal layers \rightarrow

Tall optical stack

 Large microlenses focus the beam back onto the SPAD

3D FIB-SEM characterization

• SPAD fill factor > 70%

Outline of Presentation 19

- 40nm technology introduction
- SPAD device description
- Pixel and readout
- Characterization results
- Conclusions

SPAD pixel quenching 20

- Passive quenching with disabling
 - Bias is beyond breakdown
 - Tunable quench resistance
 - Individual SPADs can be disabled

• 4 x 4 SPADs sharing NWELL

SPAD pixel 22

4 x 4 SPADs sharing NWELL

Anode design

- Optimal matched track length
- Angular symmetry
- Best optical transmission

SPAD pixel 23

- 4 x 4 SPADs sharing NWELL
- Logic
 - individual quenching and enabling
 - pulse shaper
 - OR tree
 - counters
- Well sharing between neighbouring pixel is possible

• 4 x 4 SPADs sharing NWELL

- Logic
 - individual quenching and enabling
 - pulse shaper
 - OR tree
 - counters
- Well sharing between neighbouring pixel is possible
- Varied configurations of the well sharing and surrounding circuit possible

SPAD pixel 25

- 4 x 4 SPADs sharing NWELL
- Logic
 - individual quenching and enabling
 - pulse shaper
 - OR tree
 - counters
- Pixel fill factor ~ 40%

Outline of Presentation 26

- 40nm technology introduction
- SPAD device description
- Pixel and readout
- Characterization results
- Conclusions

SPAD characterization 27

- Breakdown voltage (VHV0)
- Dark Count Rate (DCR)
 - Temperature dependence
 - Voltage dependence
 - Dark Count Rate distribution
- Photon Detection Probability (PDP)
- Timing Jitter
- Cross Talk

VHV0 vs Temperature 28

- VHV0 = Minimum reverse diode voltage required to produce pixel output pulse
 - = Diode Reverse Bias Breakdown Voltage + Inverter Threshold Voltage

VHV0 & Median(VHV0) vs. Temperature

Dark Count Rate 29

- SPAD Dark Count Rate (DCR) is the main detector noise source. It is the count rate of the detector when no light impinges on it. DCR sources include:
 - **Diffusion current** ٠
 - Tunnelling ٠
 - Trap-assisted generation •

Dark Count Rate vs Temperature 30

- Generation due to tunnelling has low temperature dependence
- DCR associated to diffusion has a doubling temperature of 7.6°C

Dark Count Rate vs Reverse Bias 31

- At room temperature the increase is exponential due to tunnelling
- At 60C the dependence on VHV is linear, as avalanche multiplication dominates

Dark Count Rate Cumulative Distribution

- Median DCR = 50 cps
 - at 25C and 1Vex
- 70 % of the population is around the median
- 60 kcps → yield > 95%

32

Photon Detection Probability 33

 PDP is the probability of a photon impinging on the surface to trigger an avalanche in the SPAD

Photon Detection Probability

- Very strong oscillations due to nitride stack
- Microlenses increase PDP and smooth oscillations

• PDP = 5% at 850nm

- This is the highest PDP value reported for industrial SPADs
- Process variability ~ ±15%

SPAD Dynamic Range

- Max CR = 150Mcps
- SPAD linearity is maintained to 15 Mcps
- Dynamic range (50cps DCR) ~
 6 orders of magnitude
- Dynamic range can be increased by grouping all SPADs using an OR Tree
 - Readout bandwidth limited

SPAD Pixel Timing Jitter at 850nm

 SPAD time response ambiguity when illuminated with a very short laser pulse

- FWHM = 140 ps
- FW10%M = 540 ps
- FW1%M = 1.3 ns

SPAD Pixel Cross Talk 37

- Cross talk is due to optical emission from avalanche in a SPAD to its neighbour
- Horizontal and vertical contribution are similar due to symmetry
- **Diagonal** will be smaller due to geometry

SPAD Pixel Cross Talk 38

- Cross talk is due to optical emission from avalanche in a SPAD to its neighbour
- Horizontal and vertical < 2%
- **Diagonal** ~ 0.6%

Summary performance table 39

Metric	IMG175SPAD Value (@ 60°C) [SPIE Photon Counting Conference]	40nm SPAD (@60°C)
VHV0	13.8V	15.5V
DCR Median	~1k cps	700 cps
PDP	3.1% (850nm)	5% (850nm)
SPAD Fill Factor	6%	>70%
Max Count Rate	37Mcps	150Mcps
Jitter	120ps FWHM, 870ps FW1%M	140ps FWHM, 1.3ns FW1%M
Current per Pulse	0.08pA	0.06pA
After-Pulsing	<0.1%	<0.1%
Cross-Talk	<0.01% (isolated SPAD)	<2% (Shared well)
Digital gate density		80% higher than 130nm CMOS
Power consumption		85% lower than 130nm CMOS

Acknowledgment 41

- TR&D team in ST Crolles
- Pixel Design Team in ST Edinburgh
- EOCS team in ST Crolles and Edinburgh
- CEA LETI in Grenoble
- Didier Dutartre and David Roy in ST Crolles

