

1st International SPAD Sensor Workshop - ISSW SPAD Based Streak Camera Pr Wilfried Uhring University of Strasbourg and CNRS

Icube laboratory, UMR 7357

February 26 – 28, 2018 – Les diablerets, Suisse

©ICube

Outline

- High speed imaging
- What is and Why Streak Imaging
 - Rotating mirror
 - Vacuum tube
 - Solid state
- SPAD based Streak Imaging

Ultra fast photon counting and processing

20th – The Manathan project

- Nuclear weapon research boosts the high speed imaging techniques
- 1939 first rotating mirror camera
 - by Miller
 - 500 000 fps.
- Patented in 1946 (Miller, 1946)
- 1955, Berlin Brixner : 1 millions fps ^{OI}
- Cordin's Model 510 rotating mirror
 - 25 million fps
 - Still commercialized but Film replaced by CCD sensors
- Use Miller principle: Miller's principle states that if an image is formed on the face of a mirror, then it will be almost static when relayed by lens to a film

Field lens

3

20th – The rotating mirror

• Rotating mirror camera applications

Exploding cylinder Model 550 380 kfps

Explosive captured by Model 570 at 2.5Mfps

20th – The rotating mirror

- Rotating mirror camera limits
 - 25 Mfps
 - On a quarter of rotation
 - With 128 sensors
 - →25E6/(4*128) \approx 5000 rotation per second
 - →almost 3 millions rpm !
- Use of:
 - an helium environment using a gas turbine
 - beryllium mirror centrifugal force
- How to increase speed ?
 - − 25 Mfps → inter frame 40 ns
 - Limit of this technology with a framing approach

20th – The streak imaging

- The streak camera
 - Remove the lens then add a input slit
 - ➔ Streak camera
- Lost 2D information (1D + time)
 - Makes possible to see what happen between two frames
 - Example of a bullet against a explosive

- Sweep speed up to 150ps/pixel
- Temporal resolution 650 ps (static slit width is 25 μm, i.e. 4.5 pixels)
- Temporal resolution about 600 x higher with streak imaging

Wilfried Uhring

Icube, University of Strasbourg and CNRS

20th – framing with image intensifier tube

- 1960 first Micro Channel Plate (MCP) electron multiplier
- Still in use and in progress ...
- Allows fast gating by driving photocathode with electrical pulses
- 1 frames with exposure time below 10 ns
- 1 frames 1000x1000 pixel
 1 ns → 1 Peta Pixel/s

20th – The streak imaging tube

- Temporal resolution down to 1 ps → Tfps
- 1000 spatial pixels
 → 1 Peta Samples per second !

20th – The streak imaging

- The streak camera applications
 - Shockwave (laser Doppler velocimetry, speed up to several km/s)

1.5

Time resolved spectroscopy

20th – The streak imaging

• The scanning line

Food safety/Packaging

GPS X Ø= full scan angle Single laser shot **GPS** base station

– Lidar

21th - Current High speed video

- State of the art high speed video camera
 - Phantom v2511,
 - 25kfps @ 1280 x 800
 - 1,000,000 @ 128 x 16
 - Record time : 96 GB filled in 2.6 second

11

- The limit of conventional high speed video is due to I/O chip max speed
 - 25 Gpixel/s, 12 bits → 300 Gb/s !!
 - Present fastest commercial single-laser-single-fiber network connections max out at just 100Gbps, 4 wavelengths at 25Gbps

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

21th - Ultrahigh Speed solid state camera

How to overcome the limit of the sensor I/O speed ?

Keep the data in the sensor ! ;-)

- Concept introduce by Elloumi In 1994
- Acquire the scene in a burst of images stored inside the pixel
- Readout the sequence of images at a conventional data rate

Burst imaging concept

Up to 25 kfps @ 1 Mpix → up to 25 Gpix/s

100 kfps up to 1 Gfps → up to ~ Tpix/s

21th - Ultrahigh speed solid state camera

- CMOS Technology (by Sugawa)
- 2013, 180 nm
- Up to 20 Mfps, 100k pixels
- 128 frames
- CMOS cap memories
- Good fill factor 37%

Horizontal Scanning and Output Circuits (20 Parallels)

Horizontal Scanning and Output Circuits (20 Parallels)

14

21th - Ultrahigh speed solid state camera

- Shimadzu
 - Model HyperVision HPV-X
 - 400 x 250
 - 128 frames
 - 10 Mfps
 - Acq. rate 1 Tpixel/s

High-Speed Collision of Resin Sphere Recording Speed: 2 million frames/s

15

Toward to the GigaFps

- CMOS Streak imaging(by ICube)
- 2013, 350 nm SiGe BiCMOS
- Release of 2D Imaging contraints
 - Aera limited electronic for pixel pitch
- Up to 8 Gfps, 128 frames
- 64x1 pixels (streak imaging)
- Pixel pitch 32 μm
- Fill factor 84 %
- Touching the physical limit of the technology
 - Single gate propagation time

16

Toward to the GigaFps

- CMOS Streak imaging (by ICube)
 - subnanosecond temporal resolution
- 100x faster than 2D
 Ultrafast image CMOS
 sensors

17

Streak Imaging

- Reducing the spatial resolution increase the frame rate
- Optimal speed obtain for one single column
- → Streak imaging
- About 100 times faster with whatever the technology
 - − Rotating mirror 40 ns Frame → 600 ps Streak
 - − Vacuum tube 200 ps Frame → 2 ps Streak
 - − Solid state 100 ns Frame → 1 ns Streak

Single shot / repeatable event

All previously described systems are single shot system

19

- A **single** event is acquire
- → Require the large data rate
- Many fast events are repeatable
 - Fluorescence, Tomography, LIDAR, Laser induce events ...
 - The phenomenon can be sampled in several time
- → Require much less data rate
- The temporal resolution can be highly increased

Single shot vs repeatable event

20

SPAD based Image Sensor

- So the data rate is no more an issue for SPAD based Image Sensor
 - True if you have all the time to make your measurement
 - False if you have to count a high number of photon in a restricted time
- Releasing the 2D array area constraints
 - More accurate timing or more processing electronic
 - Optimized data flow

Time constrained TCSPC measurement

LabonaChip

Miniaturisation for chemistry, physics, biology, materials science and bioengineering

Wilfried Uhring

Time resolved integrated photon counting systems

- Streak imaging to push the limits once again — Example: (ICube) SPAD based streak camera
 - Temporal resolution 10 ps
 - Fill factor > 30%

1: Spad & Quench 2: High resolution Time to digital Unit 10 ps quantum 3: FIFO for high data rate acquisition (BW 4 Gbps for 8 SPAD)

23

Better timing resolution: Streak sensor²⁴

- The streak lines share a unique time base
 - Ensure low timing dispersion
- Room for high resolution TDC
 - 10 ps bin

Streak TCSPC sensor architecture

- Possible to use a double TDC Array
 - Less dead time,
 - Parallel TDC conversion

Streak mode Imaging Sensor integrating a single line of Macropixels (SiPM)

Smart mini SiPM pixel for better time resolution

- The smallest is the SPAD, the better is its time resolution
 - Better to use several small SPADs

Smart mini SiPM pixel for better SNR

• Hot Pixel Elimination :

- 20% of the SPADs in an array have a DCR 10 to 1000 times higher than the other 80%*
- A 4x4 mini SiPM is very likely to
- contain hot pixel(s)

An example of DCR distribution across a 32×32 pixel array

*Veerappan, C.; Richardson, J.; Walker, R.; Day-Uey Li; Fishburn, M.W.; Maruyama, Y.; Stoppa, D.; Borghetti, F.; Gersbach, M.; Henderson, R.K.; Charbon, E., "A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter," *Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International*, vol., no., pp.312,314, 20-24 Feb. 2011

**Gersbach, M.; Maruyama, Y.; Trimananda, R.; Fishburn, M.W.; Stoppa, D.; Richardson, J.A.; Walker, R.; Henderson, R.; Charbon, E., "A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology," *Solid-State Circuits, IEEE Journal of*, vol.47, no.6, pp.1394,1407, June 2012

Smart mini SiPM pixel for better SNR

- Hot Pixel Elimination :
 - The Macropixel is considered to be uniformly lighted
 - SNR improvement ranging from 0 to 20 dB
 - One time calibration phase:
 - Measure the individual DCR for each SPAD
 - Disable the SPAD with High DCR

 α = Mean Photo Count/Mean DCR m = = individual DCR/ Mean DCR

High rate photon counting

- Photon event is Poisson process
 - Asynchronous operation
 - Spikes of activity followed by low activity
 - − A given dead time → photon lost

Parallelization

High rate photon counting

- But there is still a bottleneck at the data readout
 - If all TCSPC trig
 - Data rate spikes well above the readout rate (4Gbps for 8 SPAD) λ=2
 - FIFO allows to absorb data rate spikes
 - Fully asynchronous operation ?

FIFO assisted data Extraction

Markov chain to model the parallelized TCSPC

31

Wilfried Uhring *Icube, University of Strasbourg and CNRS*

Hybrid technologies

- Best techno for SPAD sensor
- Best techno for signal processing
- Streak approach
 - Easy hybrid connection
 - Silicon interposer
 - Wire bonding

The LinoSPAD

Hybrid CMOS AMS 0.35µm → FPGA

Samuel Burri, Claudio Bruschini an Edorardo Charbon

Wilfried Uhring

High speed on chip processing

- On chip histogram construction
 - Theoretically up to 14 GPhoton/s
 - Practically up to 900 Mphoton/s
- Looks like a single point

34

Hypervelocity Time-of-Flight Characterisation of a 14GS/s Histogramming CMOS SPAD Sensor

Neil Finlayson^{*a}, Tarek Al Abbas^a, Francescopaolo Mattioli Della Rocca^a, Oscar Almer^a, Salvatore Gnecchi^b, Neale A. W. Dutton^c, Robert K. Henderson^a

Wilfried Uhring

Icube, University of Strasbourg and CNRS

Time resolved spectrometer

• The streak camera is the perfect device for

12:08

Wilfried Uhring Icube, University of Strasbourg and CNRS

Time resolved spectrometer - Gated SBSC³⁶

A 1024 × 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS

Yuki Maruyama, Member, IEEE, Jordana Blacksberg, and Edoardo Charbon, Senior Member, IEEE

Time resolved – TCSPC SBSC

6610µm COTTOFFICE FOR TTAXET TAXET 256 x 23.8µm TDC Array 958µm Integrated TDC On chip mono-exponential assessment **Broad Spectral** SPADs for Fluorescence ounter TDCs **Clk Tree** 4000 3000 2000 1000 **Time-Gated SPADs for Raman** 0 70 580 60 560 50 540 40 30 520 20 500 wavelength [nm] time [ns] 256 × 2 SPAD line sensor for time resolved h fluorescence spectroscopy

> Nikola Krstajić,^{1,2,4} James Levitt,³ Simon Poland,³ Simon Ameer-Beg,³ and Robert Henderson^{1,*}

37

Conclusion

- Streak Imaging is just a matter of data rate and temporal resolution
 - With a constant data rate, streak imaging offer better temporal resolution
- A SPAD based streak camera
 - Faster data processing/extraction
 - Better temporal resolution (TDC and SPAD
 10 ps)
 - Better signal to noise ratio (smart activation)
 - Hybrid technologies

Contact

Pr. Wilfried Uhring

Strasbourg IHU SMIM (Systems and Microsystems for Medical Instrumentation) Team Leader

Icube SMH (Heterogeneous Systems and Microsystem) team member.

Address: 23 rue du Loess, 67037, Strasbourg Cedex France

Phone: +33 3 88 10 68 27

Email: Wilfried.uhring@unistra.fr