SPAD arrays: from single-molecule detection to wide-field phasor fluorescence lifetime imaging

Xavier Michalet¹, Antonino Ingargiola¹, Maya Segal¹, Shimon Weiss¹,

Angelo Gulinatti², Ivan Rech², Massimo Ghioni²,

Samuel Burri³, Arin Ulku³, Claudio Bruschini³, Edoardo Charbon³

¹ Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA
 ² Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

³ School of Engineering, EPFL

A brief history of past work

- 1996-2008: SPCM-AQR 14 (EG&G, Perkin-Elmer, Excelitas)
- 2008: single-pixel HPD: BiOS, SPIE Proc. 6862 (2008) 68620F
- 2010: 8x1 single-color FCS & burst detection:

BiOS, SPIE Proc. **7571** (2010) 75710G OptoE, SPIE Proc. **7608** (2010) 76082D Biomed. Opt. Expr. **1** (2010) 1408

- 2011: 8x8 (of 32x32 SPADA) single-color FCS: BiOS, SPIE Proc. 7905 (2011) 790503 8x1 single-color FCS
 DSS, SPIE Proc. 8033 (2011) 803316
- 2012: 8x1 smFRET (4 spot): BiOS, SPIE Proc. 8228 (2012) 82280B
- 2013: 8x1 smFRET (8 spot): BiOS, SPIE Proc. 8590 (2013) 85900E
 1 RE-SPAD (1 spot): BiOS, SPIE Proc. 8590 (2013) 85900D
- 2014: SwissSPAD: Photonics Europe, SPIE Proc. 9141 (2014) 914109

Opt. Expr. 22 (2014) 17573 + IISW 2013

- 2015: 4x12 single-color setup: DSS, SPIE Proc. 9492 (2015) 949204 (unpublished)
- 2016: sm file format: BiOS, SPIE Proc. 9714 (2016) 971405
- 2017: 16x1 single-color TCSPC: more 8x1 smFRET + kinetics: SwissSPAD 2: IISW 2017
 BiOS, SPIE Proc. 10071 (2017) 100710Q PLoS ONE 12 (2017) e0175766
- 2018: 4x12 smFRET (48 spots): J. Chem. Phys. 148 (2018) 123304 (+BiOS, unpublished) 4x12 CCF/crosstalk (48 spots): NIMA, DOI: 10.1016/j.nima.2017.11.070 smFRET review + perspectives: Science 359 (2018) eaan1133 SwissSPAD 2: BiOS, unpublished

Overview

- 1. Analysis of freely diffusing single molecules in solution
 - 1. Introduction
 - 2. Ideal detector requirements
 - 3. Current status
 - 4. Perspectives
- 2. Wide field imaging of single-molecules
 - 1. Introduction
 - 2. Ideal detector requirements
 - 3. Current Status
 - 4. Perspectives
- 3. in vivo NIR fluorescence lifetime imaging
 - 1. Introduction
 - 2. Ideal detector requirements
 - 3. Current Status
 - 4. Perspectives

1. Analysis of freely diffusing single molecules in solution

Förster Resonant Energy Transfer (FRET)

Single-molecule FRET Measurements: Principles

Detector Requirements

- Capture brief bursts of photons (0.1-10 ms, 10-500 ph)
 - Count rate < few MHz
 - Dead-time < 100 ns
- Time-correlated single-photon counting (TCSPC) capabilities
 - ~ 100 ps resolution (basic single burst analysis)
 - Laser repetition rate: 20-80 MHz
- Sensitivity:
 - Range: 500 nm-750 nm (Lasers: 488, 514, 532, 633, 690)
 - DCR < 1 kHz
- Afterpulsing, crosstalk:
 - As low as possible to allow for simple ACF/CCF analysis

PDE

Single-spot measurements are slow, calling for parallelization

Arrays: Measurement Geometries

1. "Formulator" principle (Mix & Monitor aka M&M)

2. "Fast mixer" principle (Position = Time)

Detector geometry for high-throughput parallel **smFRET**

1. Confocal detection

2. Independent sampling volumes

 $d \sim \lambda / NA \sim 0.5 \mu m$ *M*: 40 - 100 a: 20 - 50 µm

Phil Trans R Soc B 368 (2013) 20120035

4x12 SPAD array in custom technology

4x12 dsDNA measurements

4x12 spots: towards 1 s dynamic resolution

Linear TCSPC capable arrays

Pixel diameter:5Pixel pitch:2Geometry:3

50 μm 250 μm 32 x 1 Antonioli *et al.* Rev. Sci. Instrum. **84**, 064705 (2013) Cuccato *et al.* IEEE Photonics J. **5**(5) (2013)

Linear geometry for mixer experiments: 32x1 TCSPC capable arrays

Time-resolved measurement provide access to information inaccessible in mere counting measurements

Conclusion & Perspectives (1)

- Red-enhanced version of SPAD arrays will allow faster measurements (and potentially extend the spectral range of usable dyes)
- TCSPC capabilities are useful but not always necessary (and require high power lasers)

- 3D architecture for larger arrays (256x1, 32x32, larger? but for what applications?)
- New illumination & detection schemes needed to afford larger fields of views
- User modifiable FPGA firmware (or auxiliary NI FPGA?) for data preprocessing

3. *in vivo* NIR fluorescence lifetime imaging

Similarities & differences between singlemolecule imaging and small animal imaging

SMFRET

- Fluorescence in the visible (500 < λ <750 nm)
- Weak and sparse signals
- High fill factor needed
- Low dynamic range, high peak count rate
- Short observation timescales (high resolution macrotime needed)
- Long lifetimes (> 1 ns)
- Narrow IRF (SPAD is often dominating, but rarely an issue)

Small animal FLI

- NIR to SWIR
- Spatially extended signal, generally weak
- High fill factor needed
- Low dynamic range but potentially high peak count rate (adjustable by I_{ex})
- No need for high resolution time scale (< 0.1 s is enough to counterbalance breathing artefacts)
- Very short lifetimes (< 1 ns)
- Lots of scattering resulting in broad and spatially dependent IRF

Sparse vs Uniform signal

SPADs in detector: N "on" SPADs at any time (on average): P Macrotime stamp resolution: dt or Frame readout time: Δt

- S bytes to encode SPAD position
- T bytes to encode macrotime
- L bytes to encode nanotime

Example:

- S+T+L = 8
- 1,000 sm at 10 kHz = 10 Mcps = P/dt

Bandwidth = 80 MB/s

1-bit <u>frame readout</u> encoding:

- L bytes to encode nanotime
- Frame rate: 1/∆t

Example:

- L = 1/8 (1 bit), N = 1M
- $\Delta t = 10$ us (max count rate/pixel $\ll 100$ kHz)

S,T,L

Readout Bandwidth:

P(S+T+L)/dt

Readout Bandwidth:

 $NL/\Delta t$

• 1 frame = N/8 bytes = 125KB

Bandwidth = 12.5 GB/s most of which are 0

TCSPC vs Gated

Very demanding technologically and in bandwidth. Wasteful acquisition (e.g. detector is on G×f = 2.4% of the acquisition)

in vivo NIR FRET fluorescence lifetime analysis

in collaboration with the Intes & Barroso Labs

Chen et al., BiOS 2018, 10487-17, in preparation

FRET analysis by decay fitting

Brief introduction to phasor analysis

Fourier series of a decay

$$f(t) = \frac{1}{\tau} \exp\left(-\frac{t}{\tau}\right) \longrightarrow f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} g_n \cos\left(2\pi n \frac{t}{T}\right) + s_n \sin\left(2\pi n \frac{t}{T}\right)$$

Components of the 1^{st} harmonic: g_1 , s_1

FRET analysis with the phasor approach

Fewer gates than for decay fitting are needed for quantitative phasor analysis

Narrow (or even many) gates are not needed

SwissSPAD 1, Opt. Expr. 22 (2014)17573

14.7 ns period, 768 gates, 6 ns wide

SwissSPAD 2, IISW (2017) 234 SPIE BiOS 10498 (2018) 10498-21

50 ns period, 125 gates, 20 ns wide

Pushing the concept of large gates to the limit: FluoCam

Best of both worlds?

- Technical simplicity
- Photon efficiency

FluoCam, Biomed. Opt. Expr. 7 (2016) 1797

Conclusion & Perspectives (3)

- Photon-efficient time-resolved counting schemes are worth developing
- TCSPC resolution does not need to be that of LIDAR applications (ps), because measured observables involve 100s-1000s of photons
- *in vivo* NIR (and SWIR) FLI will benefit from improved PDE
- User-modifiable FPGA firmware (or auxiliary NI FPGA?) for data preprocessing (e.g. phasor computation)

Acknowledgments

Ryan Colyer, Giuseppe Scalia Eitan Lerner, SangYoon Chung, Yazan Alhadid Yung Kuo, Joonhyuck Park, Arkaprabha Basu

Francesco Panzeri, Luca Miari, Pietro Peronio, Ivan Labanca Piera Maccagnani (IMM-CNR, Bologna) Fabrizio Guerrieri, Federica Villa, <u>Franco Zappa</u>

Kathleen Chen, Nattawut Sinsuebphon, <u>Xavier Intes</u> Alena Rudkouskaya, <u>Margarida Barroso</u>

Funding:

