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Abstract  Compressive video sensing is the process of encoding multiple sub-frames into a single frame with 

controlled sensor exposures and reconstructing the sub-frames from the single compressed frame. It is known that 

spatially and temporally random exposures provide the most balanced compression in terms of signal recovery. 

However, sensors that achieve a fully random exposure on each pixel cannot be easily realized in practice because 

the circuit of the sensor becomes complicated and incompatible with the sensitivity and resolution. Therefore, it is 

necessary to design an exposure pattern by considering the constraints enforced by hardware. In this paper, we 

propose a method of jointly optimizing the exposure patterns of compressive sensing and the reconstruction 

framework under hardware constraints. By conducting a simulation and actual experiments, we demonstrated that 

the proposed framework can reconstruct multiple sub-frame images with higher quality. 
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1. Introduction 

  Recording a high-frame video with high spatial resolution has 

various uses in practical and scientific applications. Such video 

sensing can be achieved by using a high-speed camera, but such 

special sensor is expensive and low resolution and low sensitivity. 

 A feasible approach consists of capturing video by using 

compressive sensing techniques [1-4]. In contrast to the standard 

images captured with a global shutter, where all pixels are 

exposed concurrently, a compressive video sensor samples 

temporal information and compresses it into a single image, while 

randomly changing the exposure pattern for each pixel. This non-

continuous exposition enables the recovery of high-quality video. 

Formally, compressive video sensing is expressed as follows: 

y = ∅x 

where x is the high-frame video to be compressed, ∅  is the 

measurement matrix (exposure patterns), and y is the compressed 

single image. The following tasks are included in compressive 

video sensing: reconstruct a high-frame video 𝑥̅ from a single 

image y by using pattern ∅; optimize the pattern that enables 

high-quality video reconstruction (Figure 1). 

 In signal recovery theory, the best exposure pattern is random 

sampling from a uniform distribution. However, this is not an 

optimal pattern in terms of practical image sensing, because a 

practical scene does not always maintain the sparsity assumed in 

compressive sensing theory. However, implementing such 

completely random exposures with a practical CMOS sensor is 

not realistic, owing to hardware limitations. Therefore, it is 

necessary to optimize the exposure patterns by recognizing the 

hardware constraints of actual sensors. 

 In this paper, we propose a new pipeline to optimize both the 

exposure pattern and reconstruction decoder of compressive 

video sensing by using a deep neural network (DNN) framework. 

The proposed method is a general framework for optimizing the 

exposure patterns with and without hardware constraints. 

 

2. Hardware constraints of exposure controls 

 There exist hardware constraints that prevent the generation of 

completely random exposure patterns, which are a theoretical 

requirement of compressive video sensing. In this section, we 

detail the hardware constraints resulting from sensor architecture.   

 Hitomi et al. [2] assume the CMOS sensor that has a row and 

column address decoder and can be read out pixel-wise. However, 

it does not have a per-pixel buffer which is only a single bump 

exposure in a frame. In this paper, we termed this sensor as the 

single bump exposure (SBE) sensor. 

  Sonoda et al. [1] used the prototype CMOS sensor with 

additional reset and transfer signal lines to control the exposure 

time. These signal lines are shared by the pixels in the columns 

and rows. Therefore, the exposure patterns depended spatially on 

the rows or columns of the neighboring pixels. This image sensor 

has an additional transistor and exposure control signal line, and 

can perform multi-bump exposure. In this paper, we termed this 

sensor as the row-column wise exposure (RCE) sensor. 

 Figure 2 shows the architecture of SBE (left side) and RCE (right 

side) sensor. 

   

3. Joint optimization for sensing and reconstruction 

under hardware constraints 

 In this section, we describe the proposed optimization method of 

jointly optimizing the exposure pattern of compressive video 

sensing, and performing reconstruction by using a DNN. The 

proposed DNN consists of two main parts. The first part is the 

sensing layer (encoding) that optimizes the exposure pattern 

(binary weight) under the constraint imposed by the hardware 

structure, as described in Section 2. The second part is the 

reconstruction layer that recovers the multiple sub-frames from a 

single captured image, which was compressed by using the 
 

Fig. 1. Compressive video sensing. 
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optimized exposure pattern. The overall framework is shown in 

Figure 3. Training was carried out in the following steps: 

1. At the time of forward propagation, the binary weight is 

used for the sensing layer, while the reconstruction layer 

uses the continuous weights. 

2. The gradients are computed by backward propagation. 

3. The continuous weights of sensing and reconstruction 

layers are updated according to the computed gradients. 

4. The binary weights of the sensing layer are updated with the 

continuous weights of the sensing layer. 
 3.1 Compressive sensing layer 

 We sought an exposure pattern that would be capable of 

reconstructing video frames with high quality when trained along 

with the reconstruction (decoding) layer. More importantly, the 

compressive sensing layer had to be capable of handling the 

exposure pattern constraints imposed by actual hardware 

architectures. Because implementing nested spatial pattern 

constraints (Section 2) in the DNN layer was not trivial, we used 

a binary pattern (weight) chosen from the precomputed binary 

weights at forward propagation in the training. The binary weight 

was relaxed to a continuous value [5] to make the network 

differentiable by backward computation. Next, the weight was 

binarized for the next forward computation by choosing the most 

similar patterns in the precomputed binary weights. The similarity 

between the continuous-value weight and the precomputed binary 

pattern was computed by the normalized dot product. 
 3.2 Reconstruction layer 

 The reconstruction layer decodes high-frame videos from a 

single image compressed by using the learned exposure pattern, 

as was described in the previous section. This decoding expands 

the single image to multiple sub-frames by non-linear mapping, 

which can be modeled and learned by a multi-layer perceptron 

(MLP). As illustrated in Figure 3, the MLP consisted of four 

hidden layers and each layer was truncated by rectified linear unit 

(ReLU). The network was trained by minimizing the errors 

between the training videos and the reconstructed videos. We 

used the mean squared error (MSE) as the loss function because 

it was directly related with the peak signal-to-noise ratio (PSNR). 

 

4. Experiments 

 We carried out simulation experiments to evaluate our method.  

The network size was determined based on the size of the patch 

volume to be reconstructed. We used the controllable exposure 

sensor [1]. Therefore, the volume size of 𝑊𝑝 × 𝐻𝑝 × 𝑇 was set 

to 8 × 8 × 16  in the experiments. We assumed two different 

types of hardware constraints for the SBE and RCE sensors. The 

details of the SBE and RCE sensor constraints are described in 

Section 2. We generated a captured image simulated for the SBE 

and RCE sensors and input the simulated images to the 

reconstruction network to recover the video. Figure 4 shows that, 

in our result, the edges of the letter mark were reconstructed 

sharper than in the result of the handcrafted exposure pattern. The 

reconstruction qualities in the optimized exposure pattern were 

always better than those of the handcrafted exposure pattern. 

Table 1 shows the average PSNRs of the handcrafted and 

optimized results for the SBE and RCE sensors. Owing to the 

pattern's joint optimization and the reconstruction layers, the 

proposed method always outperformed the original handcrafted 

patterns. 

Table 1. Average PSNR of video reconstruction 

 Handcraft 

SBE[2] 

Optimized 

SBE 

Handcraft 

RCE[ 1]  

Optimized 

RCE 

PSNR 29.41 30.05 28.51 29.45 

 
4. Conclusion 

  In this paper, we first argued that real sensor architectures for 

developing controllable exposure have various hardware 

constraints that make non-practical the implementation of 

compressive video sensing based on completely random exposure 

patterns. 
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Fig. 2. Architecture of SBE and RCE image sensors. 
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Fig. 3. Network Structure 

 

 
Fig. 4. Reconstruction results of 3rd sub-frame 
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