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Abstract  Impulse response signals with multi-path interference are measured by a highly-time-resolving CMOS 

image sensor for time-of-flight range imaging. They are analyzed and understood with a phasor plot method where 

frequency components are normalized by the total intensity and calibrated by a reference plane that describes a system 

function. In measurement, a silver-coated diffuser without sub-surface scattering is utilized as a reference. The phasor 

plots for different materials and open/closed environment are compared. 
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1. Introduction 

Lateral electric field charge modulator (LEFM)[1-3] has 

opened the pico-second regime ultra-high-speed computational 

imaging in a range of a few nano seconds or shorter, whose 

charge handling speed is close to the limitation of charge 

transfer speed in silicon. In this paper, we apply our time-

resolving CMOS image sensor to measure the impulse response 

in environments and materials with multi-path interference. To 

visualize the multi-path interference, a normalized and 

calibrated phasor plot is used. Trajectories for multiple 

harmonics of time-domain complex frequency components for 

several materials are shown on the phasor plot to characterize 

the sub-surface scattering. Multiple reflections are visualized by 

the phasor plot for open and closed environments. 

 

2. Normalized and calibrated phasor plot 

Figure 1 depicts a typical environment with multi-path 

interference. The impulse response for such an environment is 

denoted by 
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Phasor plot is used to visualize the impulse response on a two-

dimensional complex plane[4-6]. Here, to remove intensity 

dependency and a system function (temporal waveform of 

excitation light, sensor response, and systematic delay caused by 

the electric and optical path length). 

Assumed that an optical signal and an system function are 

given by f(t) and h(t),respectively, the measured signal, g(t), is 

written as 
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In this paper, the frequency component is normalized and 

calibrated as follows 
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Fig. 1. Multi-path interference in time-of-flight depth imaging. 
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Fig. 2. Multi-path interference in normalized and calibrated 

phasor plot. 

 

Note that x* means the complex conjugate of a complex value, x. 

Figure 2 illustrates how multi-path interference is shown in the 

phasor plot. Direct signal is on the circle with a radius of unity. 

If an object is placed further from the camera, the angle rotates 

anticlockwise. Sub-surface scattering rotates the measure point 

anticlockwise and reduces the amplitude. Because multiple 

reflections tend to have a long path length and the pulse is 

widened significantly, a measured point can have a large 

rotation angle and a small amplitude. The measured point 

becomes a linear combination of signal components. The point, 

1.0+0i, corresponds to the reference plane. 

 

3. Experimental results 

In experiments, a time-resolving CMOS image sensor 

designed for fluorescence lifetime imaging was utilized[2]. To 
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achieve the time-resolved imaging, images were captured with 

the time window gradually shifted. As an impulse light source, 

super continuum laser (NKT, SuperK Extreme EXB-6, 

19.49MHz with a pulse picker) was used and a wavelength of 

650nm by a bandpass filter of 650nm×25nm was inserted. 33 

images were captured with a unit delay of 159.375ps and inter-

frame subtraction was performed to reproduce transient images. 

Thus, the measured time range was 5.1ns. As a reference, a 

silver-coated diffuser was used because it has no sub-surface 

scattering. 

The trajectories for several materials are shown in Fig. 4. Cork 

and the white plastic plate showed the smallest and largest 

rotation angles, respectively. It can be because cork has a large 

absorption and the optical path length is small. On the other 

hand, the white plastic plate is diffusive and absorption is very 

weak, so that the optical path length becomes very long. 

A dice was measured in an open space, in which there is no 

multiple reflections, and a closed space where the dice was 

surrounded by six white plastic plates whose size was 100m×

100mm×2mm (thickness). Figure 5 shows a situation of the 

closed environment. Excitation light was introduced through the 

hole of the front plate. Figure 5 compares the phasor plots for 

the open and closed environments. In the open space, only one 

peak caused by the dice was observed in the phasor plot slightly 

inside the unity circle due to sub-surface scattering. However, in 

the closed environment, multiple distributions are observed due 

to multiple reflections. Note that “dice for open” is 

superimposed for comparison.  
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Fig. 3. Sliding time windows for time-resolved imaging.  

 
Fig. 4. Trajectories for several materials. The harmonics orders 

from 1 to 8 are shown. 
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Fig. 6. Phasor plots for the 1st order harmonics of a dice placed 

in open and closed environments. 

 

4. Conclusion 

  Normalized and calibrated phasor plot was described in this 

paper. Multi-path interference was visualized by the modified 

phasor plot in two cases: sub-surface scattering of several 

materials and a dice in open/closed environment. 
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