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Abstract

Imaging systems with signal processing have found widespread use in DSP-based and Al-aided

applications. Processing-in-sensor (PIS) techniques take advantage of reducing power consumption and data
transfer latency by enabling data processing at the sensing node. In smart edge applications, intelligent imagers
utilizing PIS techniques with in/near-sensor feature extraction present a promising solution. This talk will explore
the existing literature and ongoing research that leverage PIS techniques while also addressing the associated

challenges and future potential.
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1. Introduction

The demand forecast for the CMOS image sensor market is
still growing and optimistic contributed by the Al-aided sensing
usage nowadays. The Al-aided smart imager is an integration of
image sensing and Al computing capabilities. It can exceed
human eye’s capability by adding intelligence in it to extract
meaningful information beyond the image itself, such as feature
extraction for machine vision. Processing-in-sensor (PIS)
technique further enhances the system efficiency of the smart
imager across diverse applications, including smart surveillance,
automotive, and robotics. In the intelligent imager using PIS
techniques, the processing-in-sensor circuit is expected to be
implemented in the CMOS image sensor between the pixel array
and ADC. The PIS circuit will perform the pre-processing task
before data digitization. By doing so, the ADC’s spec
requirement including resolution and bandwidth can be relieved.
Furthermore, the required data transfer is feature or ROI only.
This effectively reduces the demand for power/latency in
interconnections and the required memory on the processor.
According to various applications and conditions, the PIS circuit
can be implemented in various approaches and roughly
classified into two categories, including spatial domain and
temporal domain feature extractions [1].

2. Spatial domain feature extraction

The concept of spatial domain feature extraction is to
implement static texture filtering to get spatial information such
as texture, coarseness, contrast, and more to remove redundant
raw data. Several well-known processing engines for spatial
information extraction using the PIS technique have been
reported, such as LBP, HOG, and NN. The concept of LBP is to
extract spatial information by encoding the relationship between
the intensity of a central pixel and its surrounding pixels [2]. It
can be applied to texture classification and recognition, offering
advantages such as computational efficiency and immunity of
illumination and rotation. However, it comes with limitations,
including restricted global feature description and sensitivity to
noise. The HOG method extracts the spatial information by
calculating the distribution of gradient orientations in a specific
image region. It offers the advantage of immunity to
illumination as well but suffers from sensitivity to rotation [3].
On the other hand, the use of Convolutional Neural Networks
(CNN) in Al has become increasingly powerful and dominant
for spatial information extraction. Through multiple layers of
operations, CNN can extract various spatial content from an

image, including color, texture, shape, and more. The interesting
thing is that the functions in the CNN model can be easily
realized in the analog domain [4-6]. The proposed imager in [6]
is even equipped with a customized tiny CNN and accomplishes
the task of face detection using mixed-mode PIS circuits.

3. Temporal domain feature extraction

Temporal domain feature extraction is to detect the temporal
change in each pixel, and then report the level-difference image
or locations of triggered pixels. It is useful for motion detection
of consecutive images by eliminating the static information (like
background) to remove the redundant data. It can be applied to
various applications, including motion detection, direction
detection, saliency detection, dynamic depth sensing, temporal
derivative, and more. There are two main methodologies
employed in this process. One is event-based reporting, such as
the dynamic vision sensor, and the other is frame-based
reporting such as the frame differencing sensor. The idea of an
event-based reporting (ER) operation is to identify and report
the location of events by thresholding the temporal changes per
pixel. It is commonly implemented with a sensor featuring real-
time logarithmic Ipn-V conversion and asynchronous x-y
location reporting readout. Unlike the conventional frame-based
operation in standard cameras, it achieves continuous high-
speed and high dynamic range temporal feature extraction [7-
10]. On the contrary, the concept of frame-differencing (FD)
operation is to report temporal level difference or thresholding
event between two consecutive frames [11-13]. This is typically
implemented with a sensor using linear integrating Ipn-V
conversion and synchronous frame reporting readout. Unlike the
ER sensor, the FD sensor requires no in-pixel amplifier thanks
to the inherent I-V conversion gain of integrating operation,
featuring a smaller pixel size and low power consumption, but
with a smaller dynamic range.

4. Conclusion

The evolution from traditional 10T to the cutting-edge era of
cognitive AloT is in progress. This transformation involves
migrating essential information from centralized cloud to edge
devices and transforming raw data into meaningful insights with
commendable energy efficiency for specific tasks. We believe
that the processing-in-sensor technique is a promising solution
for application-driven intelligent vision systems.
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From Centralized Cloud to Edge Devices
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O Centralized cloud O Edge devices
+ High-level processing/complex task 4 Local/real-time decision-making
# Transmission cost (power & latency) # Low/Mid-level processing
4 User privacy concerns # Preserve data privacy
# Network requirement # Power-constrained environments

Smart Imager - Exceed Human Eyes’ Capabilities

é
PIS .

O What is really meaningful?

# What? / Where? / Who? / When?
O More than the image itself

# Feature extraction

4 Machine vision

Image Sensing

Internet-of-Things

ImageSensing > Al Computing
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Advantages of Processing-in-Sensor (PIS)

O Conventional imager
High-resolution ADC

Data transfer bottleneck
High-complexity computation
High-capacity memory
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O Intelligent imager using PIS
@ PIS circuit for feature extraction
@ Relieve ADC resolution
@ Transfer feature / ROI only
@ Relieve memory capacity

Image Transfer
{Feature / ROI)
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Architectures of Processing-in-Sensor (PIS)
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O Near-sensor processing O In-column processing O In-pixel processing
#+ Capability & flexibility % I[n-between solution 4 High parallelism
# Suffered latency/efficiency # Medium performance # Suffered FF
4 e.qg., classification # e.g., attention # e.g., pre-processing

Feature Extraction - Spatial Domain Information

O Concept O Applications
# Static texture filtering # Fingerprint, retina, and face for
# Coarseness, contrast, directionality, forgery detection
regularity # Biomedical diagnosis
O Purpose # Environment recognition,

autonomous vehicle
# Defect detection, smart agriculture

# Extract key characteristics
# Remove redundant data

O Methodologies
# Local binary pattern (LBP)
# Histogram of Oriented Gradients
(HOG)
# Neural network (NN)
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# Object recognition
O Pros

+ Computational efficiency

4 Immune to illumination and rotation
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# Limited global feature description
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Convolutional Neural Network (CNN)
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Feature Extraction — Temporal Domain Information

O Concept O Applications

# Detect temporal changes In each pixel 4+ Motion detection
# Report the level-difference image or % Motion direction
locations of the triggered pixels # Saliency detection
O Purpose # Dynamic depth sensing
# Motion detection between consecutive # Temporal derivative
images

# Remove redundant data

O Methodologies
# Event-based reporting: dynamic vision
sensor (DVS)
# Frame-based reporting: frame
differencing sensor (FDS)




Event Reporting (ER)

0O Concept
# Report event location by thresholding
temporal changes per pixel

standard |
camera

O Architecture autput: ||
# Sensor: real-time logarithmic Iph-V _

conversion ovs e

# Readout: asynchronous x-y location report e X VOV

O Applications
# High-speed / high-dynamic-range
# Image deblurring
# Eye-tracking
# Obstacle avoidance
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Frame Differencing (FD)
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O Concept
# Report temporal level difference or
thresholding event of two

consecutive frames
In-pixel
O Architecture % Integration & In-pixel/Column
# Sensor: integrating Iph-V conversion - < Subtraction K mf,s"dd":ﬁv
# Readout: Synchronous frame report = Vo sl = =i -

O Applications
# Saliency detection
4+ Motion detection
# Motion direction detection
# Dynamic depth sensing

Frame Difference
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Event Reporting (ER) vs. Frame Differencing (FD)

0O Sensing
@ ER: real-time logarithmic Iph-V conversion with non-
linear HDR response, need in-pixel amplification
@ FD: integrating Iph-V conversion with a linear
response, inherent gain from exposure.
O Readout
@ ER: Asynchronous x-y event location reporting of
thresholding temporal difference
@ FD: Synchronous frame reporting of temporal level
difference or thresholding event of two consecutive
frames

DAVIS 240C Event Output from
Accumulation Time = 38.8 ms

O Specifications to be considered:
@ Event sensitivity, Dynamic range, Speed,
Compatibllity with processors

Simulated Frame Difference

Event Sensitivity and DR Improvement

O Sensitivity improvement:
# ON and OFF event threshold
reduction
# May result in increased noise-
triggered events . o
Low-illumination
O Dynamic range improvement
+ Dual conversion gain

% Multiple exposure

s Event Frame W i red Frame Diference

O Possible solutions

# Adaptive gain

# Adaptive thresholding
+ Adaptive exposure
*

High-illumination
Tradeoff of event sensitivity, D ® Frame W Simulated Frame Difference
hold)

Low-illumination
(Lower Threshold)

Tos (Lower Thres

noise, and dynamic range
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Readout Speed

O Event-based reporting
Realtime I-V conversion and Asynchronous
readout

+ Event data are available once triggered
# Event rate (events per second, eps)
# Need accumulation for the following frame-
based processing
O Frame difference

= Integrating I-V conversion and Synchronous
readout
Generate event frame at a fixed time interval
= Frame rate (frame per second, fps)
Limited by the exposure time
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Compatibility with Processors: Event Frame

pocuiiation Tive = 200 s
O Asynchronous event-based
readout: event accumulation
# Similar concept with exposure time
# Requires additional post-processing

Challenges of PIS

O Analog / mixed-mode approaches
+ Low / mid-level processing
+ Accuracy / flexibility
# Application-specific task

O High parallelism / low latency
# Pixel / Column level processing
#  Pitch limitation
+ Real-time sensing
O High energy efficiency
# Reduced data transmission
4 Limited power source
# Always-on / portable / AloT application

Future Prospects of PIS

0O Customized network + error tolerance
@ PIS+Tiny-CNN, PIS+SNN, Retraining

O Pitch limitation relief
# 3-D stacking technique

O Energy harvesting

Frame 2 - Frame 1

O Synchronous frame difference
# No additional post-processing

Shrinkage form factor

Limited power
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Subconscious awareness

Attention & prediction

Comventional Digital
‘omputation

Recognition & decision
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