
Intelligent Imager with Processing-in-Sensor Techniques 
 

Chih-Cheng Hsieh 

Department of Electrical Engineering, National Tsing Hua University 

101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan R.O.C. 

E-mail: cchsieh@ee.nthu.edu.tw 

 

Abstract  Imaging systems with signal processing have found widespread use in DSP-based and AI-aided 

applications. Processing-in-sensor (PIS) techniques take advantage of reducing power consumption and data 

transfer latency by enabling data processing at the sensing node. In smart edge applications, intelligent imagers 

utilizing PIS techniques with in/near-sensor feature extraction present a promising solution. This talk will explore 

the existing literature and ongoing research that leverage PIS techniques while also addressing the associated 

challenges and future potential. 
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1. Introduction 

The demand forecast for the CMOS image sensor market is 

still growing and optimistic contributed by the AI-aided sensing 

usage nowadays. The AI-aided smart imager is an integration of 

image sensing and AI computing capabilities. It can exceed 

human eye’s capability by adding intelligence in it to extract 

meaningful information beyond the image itself, such as feature 

extraction for machine vision. Processing-in-sensor (PIS) 

technique further enhances the system efficiency of the smart 

imager across diverse applications, including smart surveillance, 

automotive, and robotics. In the intelligent imager using PIS 

techniques, the processing-in-sensor circuit is expected to be 

implemented in the CMOS image sensor between the pixel array 

and ADC. The PIS circuit will perform the pre-processing task 

before data digitization. By doing so, the ADC’s spec 

requirement including resolution and bandwidth can be relieved. 

Furthermore, the required data transfer is feature or ROI only. 

This effectively reduces the demand for power/latency in 

interconnections and the required memory on the processor. 

According to various applications and conditions, the PIS circuit 

can be implemented in various approaches and roughly 

classified into two categories, including spatial domain and 

temporal domain feature extractions [1]. 

 

2. Spatial domain feature extraction 

The concept of spatial domain feature extraction is to 

implement static texture filtering to get spatial information such 

as texture, coarseness, contrast, and more to remove redundant 

raw data. Several well-known processing engines for spatial 

information extraction using the PIS technique have been 

reported, such as LBP, HOG, and NN. The concept of LBP is to 

extract spatial information by encoding the relationship between 

the intensity of a central pixel and its surrounding pixels [2]. It 

can be applied to texture classification and recognition, offering 

advantages such as computational efficiency and immunity of 

illumination and rotation. However, it comes with limitations, 

including restricted global feature description and sensitivity to 

noise. The HOG method extracts the spatial information by 

calculating the distribution of gradient orientations in a specific 

image region. It offers the advantage of immunity to 

illumination as well but suffers from sensitivity to rotation [3]. 

On the other hand, the use of Convolutional Neural Networks 

(CNN) in AI has become increasingly powerful and dominant 

for spatial information extraction. Through multiple layers of 

operations, CNN can extract various spatial content from an 

image, including color, texture, shape, and more. The interesting 

thing is that the functions in the CNN model can be easily 

realized in the analog domain [4-6]. The proposed imager in [6] 

is even equipped with a customized tiny CNN and accomplishes 

the task of face detection using mixed-mode PIS circuits. 

 

3. Temporal domain feature extraction 

Temporal domain feature extraction is to detect the temporal 

change in each pixel, and then report the level-difference image 

or locations of triggered pixels. It is useful for motion detection 

of consecutive images by eliminating the static information (like 

background) to remove the redundant data. It can be applied to 

various applications, including motion detection, direction 

detection, saliency detection, dynamic depth sensing, temporal 

derivative, and more. There are two main methodologies 

employed in this process. One is event-based reporting, such as 

the dynamic vision sensor, and the other is frame-based 

reporting such as the frame differencing sensor. The idea of an 

event-based reporting (ER) operation is to identify and report 

the location of events by thresholding the temporal changes per 

pixel. It is commonly implemented with a sensor featuring real-

time logarithmic Iph-V conversion and asynchronous x-y 

location reporting readout. Unlike the conventional frame-based 

operation in standard cameras, it achieves continuous high-

speed and high dynamic range temporal feature extraction [7-

10]. On the contrary, the concept of frame-differencing (FD) 

operation is to report temporal level difference or thresholding 

event between two consecutive frames [11-13]. This is typically 

implemented with a sensor using linear integrating Iph-V 

conversion and synchronous frame reporting readout. Unlike the 

ER sensor, the FD sensor requires no in-pixel amplifier thanks 

to the inherent I-V conversion gain of integrating operation, 

featuring a smaller pixel size and low power consumption, but 

with a smaller dynamic range. 

 

4. Conclusion 

The evolution from traditional IoT to the cutting-edge era of 

cognitive AIoT is in progress. This transformation involves 

migrating essential information from centralized cloud to edge 

devices and transforming raw data into meaningful insights with 

commendable energy efficiency for specific tasks. We believe 

that the processing-in-sensor technique is a promising solution 

for application-driven intelligent vision systems. 
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