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Abstract  In this paper, we introduce a method of compressed sensing using coded CMOS sensors and the 
concept of deep sensing. By shifting the exposure timing for each pixel, temporal information can be encoded into 
a single image, which can then be applied to various tasks by recovering the temporal information through post-
processing. Deep sensing is the concept of using an end-to-end neural network to represent sensing and 
reconstruction in compressed sensing. By jointly optimizing the sensing and reconstruction processes, deep 
sensing enhances reconstruction quality by enabling more efficient sensing compared to random sampling.  We 
introduce the effectiveness of this approach through applications such as video compressed sensing, human action 
recognition from coded exposure images, compressed light field observation, and compressed transient image 
observation with depth map estimation. 
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1. High-speed imaging with compressive sensing 
using coded exposure CMOS image sensor 
  Compressed sensing methods using temporally coded 
exposure have been proposed to improve the temporal resolution 
of image sensors [1-3]. Traditionally, high-frame-rate videos are 
captured by high-speed cameras, but these special sensors are 
expensive, have low spatial resolution, and have poor sensitivity. 
To solve this problem, a method has been proposed to encode 
temporal information in a single image by shifting the exposure 
timing for each pixel and to reconstruct a video from the 
captured image in post-processing. 
  
2. Human action recognition using coded exposure 
images
A method of reconstruction-free action recognition from a single 
coded exposure image has been proposed [4,5].  For a camera, 
there is a trade-off between spatial resolution and frame rate. A 
feasible approach to overcome this trade-off is compressive 
video sensing. Compressive video sensing uses random coded 
exposure and reconstructs higher than read out of sensor frame 
rate video from a single coded image. It is possible to recognize 
an action in a scene from a single coded image because the 
image contains multiple temporal information for reconstructing 
a video. Unlike ordinary images, encoded exposure images are 
not suitable for deep learning using convolution because 
neighboring pixels have different information. A convolution 
layer with a shift-displacement kernel was used to solve this 
problem. 
 
3. Dynamic light field imaging with coded aperture 
and coded exposure 
  Mizuno et al.  propose a method for compressively acquiring 
a dynamic light field (a 5-D volume) through a single-shot 
coded image (a 2-D measurement) [6,7]. They designed an 
imaging model that synchronously applies aperture coding and 
pixel-wise exposure coding within a single exposure time. This 
coding scheme enables us to effectively embed the original 

information into a single observed image. The observed image is 
then fed to a convolutional neural network (CNN) for light-field 
reconstruction, which is jointly trained with the camera-side 
coding patterns. They also developed a hardware prototype to 
capture a real 3-D scene moving over time. They succeeded in 
acquiring a dynamic light field with 5x5 viewpoints over 4 
temporal sub-frames (100 views in total) from a single observed 
image. Repeating capture and reconstruction processes over 
time, a dynamic light field can be acquired at 4x the frame rate 
of the camera.  
 
4. Compressive transient imaging and depth 
estimation with optimal coded shutter 
  Transient imaging, which uses a multi-tap coded exposure 
CMOS image sensor to observe the propagation of light through 
a time-coded exposure, has been proposed [9,10]. Conventional 
transient imaging requires a special sensor and has problems 
with resolution, SNR, and measurement time. To solve this 
problem, a multi-tap encoded shutter CMOS sensor [8] was used 
to acquire transient images by compressed sensing. A multi-tap 
CMOS sensor is a sensor that has multiple circuits (taps) to store 
the charge generated by photodiodes, and achieves high 
temporal resolution by switching the taps to be transferred at 
high speed.  However, a uniform shutter cannot observe 
enough temporal information, so enough temporal information 
is convolved into each tap by temporal encoding and observed. 
By reconstructing the transient image from observations, we 
reduce the MPI effect in ToF imaging. This method can be 
applied to dynamic scenes because a coded shutter sensor can 
observe the scene response in a single shot. Furthermore, we 
improve depth estimation accuracy by optimizing the 
reconstruction network with a coded shutter that compresses the 
scene response. Furthermore, the coded shutter that compresses 
the scene response is optimized simultaneously with the 
reconstruction network to improve reconstruction quality and  
depth estimation accuracy. 
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Measurement with compressive sensing

• Compressive sensing reconstructs 𝑥 by assuming that 
𝑥 is 𝐾-sparse (𝑀 > 𝐾)
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Deep sensing

• End-to-end leaning approach
• Task oriented sensing
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Coded exposure image sensor

[Sarhangnejad et al, (2017)]

[Hitomi et al, (2011)]
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Joint optimization of capturing and 
reconstruction
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Recognition results

Accuracy [%]

Input Model Top1 Top3 Top5

Video (upper bound) C3D 39.31 61.97 70.05
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Code exposure
(Proposed)

SVC2D 29.37 47.39 56.33

Long exposure C2D 10.82 22.83 30.20

Short exposure C2D 10.32 21.85 28.58

Video ShortLongCoded
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What is a light field image

• Light field cameras measure each ray independently
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Dynamic light field image capture using 
coded aperture + coded exposure
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Reconstruction results
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Time-of-Flight (ToF) base depth imaging

• Multi-path interference (MPI) causes error

𝑙 =  
𝑡

2
𝑐

Camera

Light source
Object

𝑐: Light speed[m/sec]
𝑡: Time of Flight [sec]

Sub-surface
scattaring

Multiple bounce

23



2024/10/17

3

Shizuoka University
Imaging System Laboratory

Compressive ToF

Tap1

Tap2

⇒

⇒ 𝑁2

𝑁1

Multi-path
ObjectReflected

signal

Tap3

Tap4

⇒

⇒ 𝑁4

𝑁3

Time

𝑡

Reconstruction

• Compresses signals with
temporal coded shutter
– With iToF based sensor

• Reconstruct signal from
coded capture image

• Estimate depth from
reconstructed signal

✔ High image resolution
✔ Robust to MPI

Reconstructed
signal

Shizuoka University
Imaging System Laboratory

• Compresses signals in the charge domain
– by switching the taps with coded shutter

• Reconstruct the signal and estimate the depth 

ToF imaging based on compressive sensing
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Reconstruction with ADMM-net

• ADMM: Alternate iterative optimization
– 𝑊(⋅): Initial reconstruction with coded shutter
– U-net:Denoising

• Loss function
– 𝐿𝑜𝑠𝑠ூ = 𝑅𝑀𝑆𝐸 𝑣௄, 𝑣ீ் +
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Simulation results
ADMM-net
+Random

TVAL3
+Random

ADMM-net
+Optimized

Average of 
9 scene
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ADMM-net
+Random

ADMM-net
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Image PSNR 25.31 30.01 30.34
Depth MSE 0.0143 0.00917 0.00356
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Specifications of prototype sensor
Technology 0.11 μm CIS

Burst frame rate 607 Mfps
Read frame rate < 21 fps

Number of effective 
pixels (sub-pixels)

212 (H)
×188 (V)

Pixel pitch (sub-
pixel)

11.2 μm (H)
×11.2 μm (V)

Total number of taps 16 (4×4)

Chip size 7.0 mm (H)
×9.3 mm (V)

Coding bit length 8-256
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Estimated real scene depth
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