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Abstract We are developing monolithic active pixel sensors, called X-ray SOIPIXs. These sensors are based on
a Silicon-On-Insulator (SOI) CMOS technology and are intended for use on future X-ray astronomy satellites (e.g.,
Tsuru+18, Proc. SPIE, 10709, doi: 10.1117/12.2312098). Each pixel has an event trigger output function which
allows for an immediate readout of only the pixels hit by an X-ray with its high time resolution better than ~10 ps.
This paper presents the introduction of the X-ray SOIPIX and its current achievements.
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1. X-ray Astronomy

X-ray astronomy is the study of celestial objects at X-ray
wavelengths. Since X-rays from celestial objects are absorbed
by the atmosphere, it is necessary to develop satellites equipped
with X-ray instruments to observe celestial objects. The current
standard X-ray instruments are imaging spectroscopy systems
combining a Wolter-I type X-ray telescope and an X-ray CCD
imager [1]. We operate the X-ray CCD in single photon
counting mode to obtain the position on the CCD (direction of
arrival), energy and arrival times of each incident X-ray.

2. Limitation of X-ray CCD

X-ray CCDs have high performance in terms of imaging and
spectroscopy [2, 3]. However, the current time resolution of X-
ray CCDs cannot keep up with the improved performance of X-
ray telescopes. As the X-ray collecting area of the telescope
increases and the angular resolution improves, the probability of
multiple X-ray photons hitting the same pixel during single
exposure increases, making it impossible to measure the X-ray
energy (pile-up). Also, fast time variability, such as black holes,
cannot be observed. High temporal resolution and fast readout
are therefore required for the next generation of X-ray imagers.

3. Trigger-Output Event-Driven SOI pixel sensor

We are developing a Trigger-Output Event-Driven SOI pixel
sensor (X-ray SOIPIX) for the next generation of X-ray imager
[4]. An SOI pixel sensor is monolithic using bonded wafer of
high resistivity depleted Si layers for X-ray detection, SiO2
insulator and low resistivity Si for CMOS circuits [5, 6]. In the
X-ray SOIPIX, each pixel has an event trigger output function
that allows immediate readout of only those pixels hit by an X-
ray with its high time resolution better than ~10 ps. Bulk CMOS
image sensors can also be equipped with the function. However,
the depletion thickness of bulk CMOS image sensors is too thin
to detect high energy X-rays. Then, we adopt SOI pixel sensor
technology.

Since 2010, we have been developing X-ray SOIPIXs using
Lapis Semiconductor's 0.2 pm FD-SOI CMOS technology [7].
The development of the sensor focuses on three main aspects:
pixel circuits, device structures and on-chip functions.

4. Pixel circuit and Device Structure

A pixel circuit consists of an analog readout circuit and a
comparator circuit. The analog readout circuit consists of a
charge sensitive amplifier, CDS sampling, source follower. We
use an inverter chopper type comparator.

The device structure was the most challenging part of the
development. A small capacitance at the readout node is
required to reduce the readout noise. The back gate effect of the
circuit due to the electric field from the back bias is needs to be
avoided [6]. The dark current from the interface between the
sensor layer and the BOX layer needs to be reduced.
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Interference between the readout node and the circuit is
necessary to be avoided. Signal charges generated at the pixel
boundaries are required to also be collected without loss [8, 9].
Together with the Kawahito group at Shizuoka University, we
have successfully developed a PDD (Pinned Depleted Diode)
structure to meet this requirement [10, 11, 12].

5. Performances

From the above developments, the required performance has
now been achieved: observations with a temporal resolution
better than 10 ps at an event rate higher than ~500 Hz can be
made without pile-up. The quantum efficiency already meets the
requirements for the high energy band above 6 keV, which is
determined by the depletion layer thickness [13]. The one in the
low energy band below 1 keV still has room for improvement.
We will develop it in the future. Energy resolution is the most
difficult performance item, but the requirements are met [11, 13,
14]. However, there is still room for performance improvement.
This will also be developed in the future. In terms of radiation
resistance, the probability of the SEU is very low thanks to its
SOI structure [15], and the TID has also been experimentally
proven to meet the required performance over the observation
period [16, 17].

6. On-chip function and "Digital X-ray SOIPIX"

We are developing various on-chip functions to increase
practicality and broaden the range of applications. One is on-
chip pattern processing and particle species identification [18].
X-rays produce compact clouds of signal charges, while high-
energy charged particles produce tracks. Using this property, we
have implemented an on-chip function to discriminate between
the two.

On-chip ADCs, DACs, and BGRs (bandgap reference) are
also being developed: a 14-bit 1-stage cyclic ADC and a 12-bit
DAC have been developed, and test devices have been
processed. Imaging spectroscopy using the ADCs has been
successfully performed [19]. We are now developing a function
to generate the clock to drive the sensor to simplify the interface
and readout circuitry.

7. Applications other than X-ray astronomy

We are implementing scientific applications of the X-ray
SOIPIX. We are developing the electron-track Compton
gamma-ray camera [20, 21, 22], preparing a solar axion search
experiment [23], a Lunar and planetary X-ray fluorescence
mapping camera, and neutron TOF imaging spectroscopy.
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Limitation low tim lution of CCD (~1 9]
« Unable to take advantage of the performance of the latest X-ray mirrors
that provide large X-ray collecting area and high angular resolution.

* Event pileup occurs due to slow readout. Photon counting is impossible.
.
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» Unable to resolve fast variability of compact objects such as blackholes
and neutron stars, which requires better than 30psec (=10km/c).
» Unable to apply anti-coincidence technique using anti-counter
» Unable to make use of the excellent performance of Si in the band
above 10 keV due to the high detector background
» The technique requires time resolution better than 10usec.

High time resolution better than 10usec is Key
to the next generation of X-ray Astronomy
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| conventional Single SOI
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- alarge sense node capacitance (Csense)

n-well Sense node — not easy to achieve low readout noise
« causes capacitive coupling and interference
p+ between pixel circuit and sensor layer
Sensor layer p--

— degrade spectroscopy performance

 Pinned Depleted Diode (Kameh 18)
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on-chip ADC for “digital XRPIX” 22

XRPIX9 equipped
14-bit 1-stage Cyclic ADC with on-chip ADC
* Small Size: 20 um x 2 mm width/1ch
* Fast Conversion : 5.96 usec
* Low Current Consumption : 125 pA/ 1ADC
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* We have two gain outputs.
* Low gain (x1) : Range 0 - 80 keV
« High gain (x4) : Range 0 - 20 keV
where there are many astronomically
important emission lines.
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Application of X-ray SOIPIX
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